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Abstract

Spontaneous blinking is one of the most frequent human behaviours.
While attentionally guided blinking may benefit human survival, the
function of spontaneous frequent blinking in cognitive processes is poorly
understood. To model human spontaneous blinking, we proposed a leaky
integrate-and-fire model with a variable threshold which is assumed to
represent physiological fluctuations during cognitive tasks. The proposed
model is capable of reproducing bimodal, normal, and widespread
peak-less distributions of inter-blink intervals as well as the more
common popular positively skewed distributions. For bimodal
distributions, the temporal positions of the two peaks depend on the
baseline and the amplitude of the fluctuating threshold function.
Parameters that reproduce experimentally derived bimodal distributions
suggest that relatively slow oscillations (0.11–0.25 Hz) govern blink
elicitations. The results also suggest that changes in blink rates would
reflect fluctuations of threshold regulated by human internal states.

1 Introduction 1

Spontaneous blinking is the most frequent eye-closing behaviour in daily 2

life [1]. Humans spontaneously blink 20–30 times per minute [2]. This is 3

approximately 5−10 times as many as the necessary frequency to 4

maintain the humidity of eye surfaces [3]. 5
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In recent years, it has been hypothesized that such frequent blinking 6

could play an important role in adaptive human behaviours [4], [5]. 7

Participants in a laboratory experiment tended to blink immediately 8

after the emergence of intermittently presented visual stimuli [6] 9

indicating that people reliably receive visual information avoiding 10

oversight errors. Similarly, researchers have reported that viewers were 11

likely to blink at implicit breaks in expert storytelling performances [7]. 12

These findings suggest that people know when to blink through 13

interaction with external inputs. As a result, temporal shifts of attention 14

are guided by professional performances, with an emerging 15

synchronizations of blinking. Neurological research further showed that 16

spontaneous blinks contribute to disengaging attention from audio-visual 17

stimuli [8]. Owing to this function, people would be able to allocate 18

attention to new targets immediately after blinking. Thus blinking could 19

be a means for humans to efficiently gather information from the huge 20

amount of surrounding audio-visual stimuli. 21

Although numerous experimental studies have been developed, little 22

theoretical research using mathematical models has been carried out. The 23

one-dimensional stochastic diffusion (OSD) model has been proposed as a 24

mathematical model of spontaneous blinking [9]. This model assumes a 25

blink generator in which electrical potential varies depending on the 26

external inputs of corneal stimulation such as dryness, dust, or muscle 27

fatigue. The electrical potential varies as Brownian motion process, 28

resulting in a blink when the potential reaches a threshold. The potential 29

exponentially decays to a constant value when the blink generator 30

receives no inputs. Thus, intervals between spontaneous blinks are 31

formulated as a first-passage-time to a constant threshold. According 32

to [9], burst patterns in blinking can be explained by assuming that the 33

threshold was shifted lower when the participants were drowsy. 34

Human blinking rates, however, vary in a few tens of seconds while 35

watching an audio-visual stimulus [10]. A realistic model should account 36

for this variation. In addition to such temporal characteristics, changes in 37

blinking rates often provide less common distributions of inter-blink 38

intervals (IBIs) in cognitive tasks [6], [11]. Thus, an adequate model 39

should reproduce the diverse distributions of spontaneous blinking. The 40

OSD model cannot reproduce distributions of IBIs because of its 41

stochastic nature and constant threshold. 42

In this paper, we propose a leaky integrate-and-fire (LIF) model with a 43

variable threshold to represent the fluctuation of internal states of human 44

blinks. First, we examine the reproducibility of the distributions of IBIs 45

by the OSD model, however, the OSD cannot reproduce experimental 46

results. Then, we show that the proposed LIF model reproduces a variety 47

of distributions such as the positively skewed, normal, peak-less, and 48

bimodal distributions of IBIs. Finally, we explore the parameters that 49

reproduce the distributions of IBI reported in a classical experimental 50
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study. 51

2 Model of Human Spontaneous Blinks 52

2.1 One-dimensional stochastic diffusion model 53

In this model, changes in the potential X of the blink generator are 54

governed by the following equation: 55

dX(t) =

(
−X(t)

β
+ µ

)
dt+ φdW (t), (1)

with an initial condition X(0) = X0. 56

In Eq. (1), W is a Wiener process that is characterized by spontaneous 57

decay β (> 0), average input µ (−∞ < µ < ∞), and a noise term of φ 58

(> 0) for a random process. This stochastic differential equation is 59

formally equivalent to the Ornstein-Uhlenbeck process. The interval 60

between one blink and the next (IBI) can be expressed as a 61

first-passage-time density function, which is defined by the time duration 62

between the initial potential X0 and the time to pass the threshold 63

potential. 64

The OSD model is based on the Ornstein-Uhlenbeck process and 65

therefore the potential X obeys the mean reversion law [9]. If we took 66

P (ω|α, t) as the probability that a stochastic variable α is given when 67

t = 0 whereby we gain ω at time t, in this model, P (−∞|X0, t) = 0. 68

According to Hoshino [9], this mathematical assumption represents the 69

physiological nature of a blinking generator that reliably repeats to active 70

blinking within a finite time period without assuming a reflecting 71

boundary. 72

The results of numerical simulations demonstrated that the OSD 73

model can reproduce the positively skewed distribution of experimentally 74

observed IBI [9]. However, this model does not reproduce the other 75

previously reported distributions of IBI (See, Supplementary Information, 76

Fig. B in S1 File). 77

2.2 Leaky integrate-and-fire model with a variable threshold 78

Although the primary physiological function of blinking is to prevent 79

dryness of eye-surfaces, cognitive functions of human blinks have also 80

been reported [7], [12]. A human blinks in accordance with semantic 81

segmentations of audio-visual information. For example, people tend to 82

blink after looking at punctuation marks in reading tasks [12] and 83

immediately after listening to the punch line of jokes while viewing a 84

storytelling performance [7]. Neurological research indicated that 85

spontaneous blinks contribute to disengaging attention from audio-visual 86

stimuli [8]. Cognitive load is integrated while audio-visual information is 87
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Fig 1. Results by the LIF model with (a), (b) a constant and (c) a variable
threshold. The V increases with integrating the binomial input I. The parameter c is
the decay term and the parameter σ is the sntandard deviation of noise ξ. The
baseline of the threshold function a = 1. (a) There are no decay and no noise, i.e.,
c = 0 and σ = 0. (b) There is no noise, i.e., σ = 0. (c) The threshold is time-varing
with the amplitude k and the period τ where the decay and the noise exist.

continuously accumulated. When people blinks, however, the cognitive 88

load is reset by attentional disengagement where a part of audio-visual 89

information is transmitted to the next processing stage. These facts 90

indicate that we can model the biophysical changes in an internal value of 91

a blink generator which is driven by cognitive load as well as by 92

physiological inputs such as dryness and fatigue of muscle. 93

As one of the possible models, we used a leaky integrate-and-fire model 94

with a variable threshold to represent such a blink-and-reset mechanism. 95

The leaky integrate-and-fire models have been used as models of changes 96

in membrane potential of a single neuron [15]. Human blinking is a 97

macroscopic phenomenon that involves several brain areas , and thus 98

different elements should be modelled. However, as long as we could 99

assume that integrate-and-reset mechanism as a plausible postulation, 100

Thus, the leaky integrate-and-fire model is suitable for human blinking as 101

well because the mechanism of blink-and-reset would be a plausible 102
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postulation. 103

As a possible mechanism for blinking intervals providing a variety of 104

distributions, we assumed that the changes in blink rates are regulated by 105

internal states that could vary in accordance with external stimuli. To 106

construct the model, we assume a simply formulated situation where a 107

background oscillation exists as a regulator of frequent human blinking. 108

Such oscillation would emerge spontaneously as a result of physiological 109

rhythms in addition to the rhythm induced by the external stimuli during 110

an experimental task that requires visual attentions. In this study, we 111

consider a leaky integrate-and-fire model with a variable threshold [13]. 112

The potential V of blinking generator is governed by 113

dV

dt
= −cV + I + ξ, (2)

where c is a constant decay term and I is an external input with intensity 114

b. The last term represents the Gaussian noise ξ ∼ N(0, σ2) derived from 115

the random fluctuation of external stimuli. The noise ξ = 0 when σ = 0. 116

One way to extract a particular rhythmic process in a physiological 117

system is to set a variable threshold function [14]. Then, we introduced 118

the following threshold function θ(t) determined by 119

θ(t) = a+ k sin
2πt

τ
, (3)

where a is the baseline constant, k is the amplitude coefficient, and τ is 120

the period. When V reaches the threshold, it immediately elicits a blink. 121

Figure 1(a) and (b) shows the typical pattern when a = 1 and k = 0, 122

i.e. θ(t) = 1. In a simple case of a perfect integrator without decay and 123

noise, i.e. c = 0 and ξ = 0σ = 0, V demonstrates a monotone increasing 124

with accumulating non-negative external inputs I (Fig. 1(a)). Even when 125

the threshold is constant, V , in the integrate-and-fire model, behaves in a 126

complex way due to the decay term c and the noise ξ = 0σ = 0, resulting 127

in the creation of irregular IBIs (Fig. 1(b)). The parameter k determines 128

the amplitude of the threshold function θ(t). Owing to the nonlinearity of 129

the varying threshold function θ(t), IBIs can show rather complex 130

patterns even if the external input I is constant. 131

Previous researches have revealed the effect in a modulation of the 132

current in LIF models of a neuron numerically and 133

analytically [15], [16], [17]. A modulation of the current can be 134

mathematically transformed to the variations of threshold. Therefore, the 135

LIF model with a variable threshold would provide results that 136

correspond to the previous research on a neuron. However, the LIF model 137

would also be useful to understand statistical behavior of the human 138

blinkings if the LIF model fit the data from physiological experiments. 139
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3 Numerical Simulation and Analysis 140

3.1 Parameters 141

To the best of the authors’ knowledge, no mathematical proof provides 142

that first-passage-time density functions of the Ornstein-Uhlenbeck 143

process always exhibits positively skewed distributions. Thus, the ODS 144

model [9] may reproduce a variety of distributions when specific 145

parameters are set. Hence, we re-examined the distributions simulated by 146

the OSD model. In this replication, threshold potential was set to 1.0 and 147

the parameters of the Ornstein-Uhlenbeck process were set as shown in 148

Table 1 to cover the typical ranges of decay β and input µ that elicit 149

blinking at realistic intervals. In the numerical experiments, the 150

parameters β, µ, and φ are increased by the values denoted in the third 151

column of Table 1. 152

Table 1. Parameters used in the OSD model.

range an increment
β [0.01, 10.0] 0.01
µ [0.1, 10.0] 0.1
φ [0.5, 1.0] 0.05

In all simulations, the time step was set to dt = 0.001 s. The total 153

time for observation was 50 min (= 3, 000 s) to gain enough occurrences 154

of IBI to estimate the distribution of human spontaneous blinking [3]. 155

On the other hand, I in the simulations of the proposed model,
parameters were set as follows: the intensity of the external input I of
which intervals obey a binomial distribution was set to b = 1. To explore
a relatively wide range of intensities for the inputs, a constant threshold
baseline a = 1 was set. When we assume the simple case with c = 0 and
ξ = 0σ = 0, it is necessary to accumulate non-negative inputs 1, 000 times
because b× dt = 0.001. Taking into account the binomial distribution of
I, 2, 000 steps were needed on average to reach the threshold baseline. In
other words, the variable V reaches the threshold in an average of 2 s.
For instance, in case that k = 0.20, this corresponds to a maximum
deviation 1/5 from the threshold baseline when a = 1. In case that
k = 0.0, however, the threshold is a constant θ(t) = a because

k sin
2πt

τ
= 0.

The period τ corresponds to the frequency of the threshold function θ(t).
For example, the frequency of the threshold is 0.1 Hz for τ = 10 s and
10.0 Hz for τ = 0.1 s. Figure 1(c) shows the typical pattern when a = 1,
k = 1/10, and τ = 5 s, i.e.

θ(t) = 1 +
1

10
sin

2πt

5
.
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3.2 Evaluation of Distribution 156

Based on observation of human blinking behaviours, Ponder and 157

Kennedy [18] reported four types of distributions of IBI. Although this 158

study is classical, we focused on this study because it had reported all of 159

known distributions. Moreover, the distributions were obtained from 160

sufficient number of participants with using a certain procedure. 161

Variations of distributions were consistent with that obtained in the 162

following experimental studies [2], [5]. Thus, Ponder & Kennedy’s [18] 163

four types of distributions of IBI are very informative even in recent 164

years. According to [18], the results show that most common distribution 165

was positively skewed (62.0%, 31/50 people). The authors also observed 166

peak-less distributions (22.0%, 11/50), bimodal distributions (12.0%, 167

6/50), and normal distributions (4.0%, 2/50). 168

We evaluated the peaks of simulated distributions of IBIs using kernel
estimation of probability density. The kernel density function f̂h(x) was
estimated as

f̂h(x) =
1

nh

n∑

i=1

K(u).

where xi was the ith observed values and h was the bandwidth, n was the
total number of xi. We used a Gaussian kernel function, which is
described as

K(u) =
1√
2π

e−u2/2,

where

u =
x− xi

h
.

In this equation, xi was the ith observed value and h was the bandwidth, 169

n was the total number of xi. For kernel density estimations, we used the 170

C++ library [19] in which the optimal bandwidths h were calculated as 171

the integral over the square of the curvature using the trapezoidal rule. 172

We then estimated the number of peaks in the simulated distributions 173

by applying the peak-finding algorithm [20]. In order to detect peak(s), 174

this algorithm differentiates the estimated probability density and finds 175

the locations where the signs change from positive to negative. Each peak 176

is determined relatively rather than absolutely because the probability 177

density could be high depending on the bandwidth. Therefore, a peak 178

was defined as the point that fulfills the following two conditions that the 179

peak point exceeds 0.1, and exceeds one quarter of the difference between 180

the maximum value and the minimum values. If any probability density 181

was incomputable due to low occurrence of blinking, the peak-finding 182

algorithm was not applied to those specific results. 183

We evaluated the kernel-estimated distribution in the range of 0–20 s, 184

which is the usual IBI range. We calculated the median of the results of 185

the simulations for comparison with the means of experimental data, 186
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because the shapes of the distributions were diverse. For unimodal 187

distributions, we used these median values to detect the skewness. If the 188

time location of the peak was lower than the centre of the estimated 189

range, we regarded the distribution as the positively skewed. 190

For bimodal distributions, we evaluated the time locations of two 191

simulated peaks. We permitted differences within ±0.025 s for each 192

reported peak. For instance, if the time locations in the experimental 193

data were 0.5 s and 5.5 s, we assumed that these peaks were reproduced 194

when the first simulated peak was located between 0.475–0.525 s and the 195

second simulated peak was located between 5.475–5.525 s. The width of 196

each histogram bin in Ref. [18] was 0.5 s, and therefore the range was 197

narrow enough to capture the simulated peaks. 198
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Fig 2. Results obtained by the LIF model with a variable threshold.
Probability density functions change in accordance with decay term c or amplitude of
threshold function k. (a) The symmetric shape of distributions are maintained even
when the decay term c becomes larger. (b) The tails of the distributions expand when
the amplitude k becomes larger.

4 Results 199

4.1 Distributions of IBI simulated by OSD model 200

Our simulations resulted in 901, 000 solutions for the OSD model. Then, 201

70.53%(635, 488/901, 000) of the solutions had a peak, while the 202

remainder (29.46%) had no peak defined by the peakfinder algorithm; 203

bimodal and other multimodal distributions were not detected. One third 204

(30.84%, 195, 985/635, 488) of distributions with a peak were positively 205

skewed although the time location of the peak depended on the 206

parameters. Otherwise (69.15%, 439, 503/635, 488), the simulated 207

distributions approximated normal distributions. Regarding the 208
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distributions without peaks, the probability density was approximately 209

constant within the range of 0–20 s, which is chosen for the simulation 210

(See, Supplementary Information, Fig. B in S1 File, for detail). We 211

considered that these results demonstrated peak-less distributions at least 212

in this range. Thus, the one-dimensional stochastic diffusion model 213

reproduced only positively skewed, normal and widespread peak-less 214

distributions of IBIs. 215
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Fig 3. Results by the LIF model with a variable threshold. The V increases
with integrating the binomial input I. The parameter c is the decay term and the
parameter σ is the standard deviation of noise ξ. The baseline of the threshold function
a = 1 and the threshold is time-varing with the amplitude k and the period τ . (a) The
period τ is short and the prolonged IBI is observed only if the value V is not trapped
by the threshold function which is convex down. (b) When the threshold function is
convex up with the large period τ , the prolonged IBI is frequently observed. (c) Due to
the large decay term c, the prolonged IBI is observed even when the period τ is small.

4.2 Proposed model 216

4.2.1 Parameters and behaviours of V and distributions of IBI 217

Contrary to the OSD model, the leaky integrate-and-fire model with a 218

variable threshold reproduced a variety of distributions depending on the 219

September 12, 2018 9/17



parameters. By experimenting with the parameters, we thus could 220

reproduce the distributions of IBI of spontaneous human blinking. 221

When the parameters were fixed at a = 1, ξ = 0σ = 0, and k = 0, the 222

mean and median values increased as c became larger within the range of 223

0.0–0.3 (Fig. 2(a)). The symmetric shape of the distribution did not 224

change. In the leaky integrate-and-fire model, the intervals of the 225

external input I obey a binomial distribution. Theoretically, the leaky 226

integrate-and-fire proposed model reproduces the normal distribution of 227

IBI with these specific parameters because a binomial distribution with 228

sufficient sample size approximates a normal distribution. 229

When the parameters were fixed at ξ = 0σ = 0 and c = 0 and then the 230

amplitude k of the threshold functions varied in the range of 0.0–0.3, the 231

medians of the distributions were almost constant. In this case, however, 232

the tails of the distributions expanded and the shorter IBI showed 233

relatively higher probability density than the longer one (Fig. 2(b)). 234
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Fig 4. The number of peaks of the distributions of IBI in case that c and k
are changed. The color bars show the number of peaks. (a) Trimodal distributions
are observed as red clusters surrounded by the areas of bimodal distributions. (b) For
the larger period τ , trimodal distributions are not observed.

The proposed model was capable of reproducing bimodal distributions 235

by setting the amplitude k and the period τ of threshold functions. As 236

shown in Fig. 3(a), when the threshold function θ(t) is convex downward, 237

the value V frequently reached the threshold. In this case, the number of 238

the peak was unity. When the threshold function θ(t) fluctuated near the 239

baseline with a smaller amplitude and a longer period, prolonged IBIs 240

occurred (Fig. 3(b)). Due to the effect of the decay term c, the value V 241

remained just below the threshold. In this case, the number of peaks was 242

two. Therefore, if a larger decay term was chosen, we were able to obtain 243

both relatively longer IBIs and shorter IBIs even when the baseline was 244

much lower (Fig. 3(c)). 245

We chose the parameters of the proposed model as shown in Table 2 to 246
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cover approximately widest ranges of c and k. The third column in Table 247

2 shows increments for the parameters c, k, and τ . The period 248

1 ≤ τ ≤ 10 s was set to correspond to the range 0.1–1.0 Hz. For the sake 249

of simplicity, other parameters were fixed to a = 1 and ξ = 0σ = 0. 250

Table 2. Parameters used in experiments by the LIF model with a variable threshold

range an increment
c [0, 1] 0.01
k [0, 0.9] 0.01
τ [1, 10] 0.5

In the range of these parameters, we obtained 174,629 solutions for the 251

proposed model. The results of peak-detection showed that 4.68% 252

(8, 170/174, 629) of distributions were peak-less, 37.95% 253

(66, 273/174, 629) were unimodal, 41.03% (71, 653/174, 629) were 254

bimodal, and 1.38% (2, 411/174, 629) of those were trimodal. The 255

remaining 14.96% (26, 122/174, 629) of distributions were not computable 256

due to their lower number of blinks. 257

The proposed model also produced trimodal distributions. Figure 4 258

demonstrates the number of peaks depending on decay term c and 259

amplitude k when a = 1 and ξ = 0σ = 0 (these parameters are discussed 260

in Section 4.2.2). 261

4.2.2 Reproduction of Ponder and Kennedy’s [18] bimodal distributions 262

of IBI 263

The proposed model is capable of reproducing bimodal distributions of
IBIs. In this reproduction, the time bins that contain peaks were
determined by the combination of baseline a and amplitude k of the
threshold function θ(t). The value V is most likely to reach the threshold
when the threshold function θ(t) has a minimal value at

sin
2πt

τ
= −1,

where

θ(t) = a+ k sin
2πt

τ
= a− k.

Hence, the time location of the first peaks (the peak closest to 0) is 264

determined by the values a− k. If the decay term exists in the range of 265

0 < c < 1, the first peak is located around 0.5 s when a− k ≃ 0.15. If the 266

value V is not trapped by the threshold function, it increases with 267

non-negative inputs. Then, the value V certainly hits the threshold 268

function which is convex downward. Therefore, the intervals between the 269

time location of the first peak and that of the second peak are always 270

smaller than the period τ of the threshold function. Consequently, T the 271

time location of the second peak depends on the period τ . 272
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Table 3. Peaks and means reported in Ref. [18] and the parameter ranges to
reproduce these peaks.

Reported in Ref. [18] Parameters of the proposed model
Case First peak Second peak Mean a− k τ Freq.[Hz] Median

1 0.5 3.5 2.05 0.14− 0.19 4.0− 7.0 0.14− 0.25 2.42− 2.73
2 0.5 5.0 3.31 0.14− 0.16 6.0− 8.5 0.12− 0.16 3.45− 3.86
3 0.5 5.0 3.64 0.14− 0.16 6.0− 8.5 0.11− 0.16 3.45− 3.86
4 0.5 6.5 4.12 0.15− 0.16 8.0− 8.5 0.11− 0.13 4.65− 4.91
5 1.0 5.5 3.95 0.30− 0.35 6.5− 9.0 0.11− 0.15 3.95− 4.65
6 0.5 7.0 4.45 0.15 9.0 0.11 5.03

Note. For case 6, one combination of parameters existed.

Assuming that the threshold function determines time locations of 273

peaks, we can reproduce two peaks where we intend to allocate. Table 3 274

demonstrates the time locations of peaks and the means in the bimodal 275

distributions in the experimental study [18]. 276

The parameters shown in Table 3 demonstrate the minimum value 277

a− k and the period τ that reproduce bimodal distributions. As shown in 278

Table 3, 0.14 ≤ a− k ≤ 0.35 and the period was 4.0 ≤ τ ≤ 9.0 s. These 279

periods correspond to 0.11–0.25 Hz. 280

Furthermore, the proposed model also produces trimodal distributions 281

if specific particular parameters are given. For instance, we obtain 282

trimodal distributions when c = 0.05, a = 1, and k = 0.6, i.e., a− k = 0.4 283

under the condition that the period τ = 7.5. The combinations of 284

parameters that reproduce trimodal distributions were distributed as 285

clusters (red regions in Fig. 4(a)). The trimodal distributions were also 286

obtained when we expanded the ranges of parameters to 0 ≤ c ≤ 1 and 287

0 ≤ k ≤ 0.9 (See, Supplementary Information, Fig. C in S1 File). The 288

trimodal distributions could exist in areas surrounded by the bimodal 289

distributions (Supplementary Information, Fig. C (b), (c) in S1 File). To 290

reproduce the empirical bimodal distributions reported by Ponder and 291

Kennedy [18], the parameter range of τ was estimated as 4.0–9.0. Within 292

this range, we obtain the trimodal distributions as well (Supplementary 293

Information, Fig. C (b), (c) in S1 File). 294

5 Discussion 295

5.1 Distributions of spontaneous human blinking 296

Although the OSD model [9] reproduced the positively skewed, normal, 297

and peak-less distributions of spontaneous human blinking, the model did 298

not reproduce bimodal distributions within the range of typical 299

parameters. In contrast, the proposed model reproduced all four 300

distributions including the bimodal one. 301

Contrary to the previous experimental study [18], the positively 302
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skewed distribution was not the most common among the numerical 303

results of the proposed model: 66, 273 cases (37.95%) followed a unimodal 304

distributions and only 22, 142 (12.6%) cases were positively skewed. The 305

normal distributions were also achieved by the binomial nature of inputs, 306

albeit only in the simplest cases with noiseless inputs and thresholds with 307

a constant value, i.e. ξ = 0σ = 0 and k = 0. In most simulations, 308

however, ξ = 0σ = 0 and k > 0. These results suggest that a noisy system 309

reproduces the positively skewed distributions if the threshold varies 310

periodically. One possibility is that positively skewed distributions are 311

common in previous studies (e.g., [3], [18]) as a consequence of the 312

ubiquitous noise in biological systems, such as blink generators. 313

The bimodal distribution was also observed in the experimental 314

study [18], albeit less commonly than the positively skewed and normal 315

distributions. To reproduce the bimodal distributions, the differences 316

between baseline and threshold amplitude, i.e. a− k, had to be set at 317

lower values. When the value of the threshold function was convex 318

downward (Fig. 3(c)), the model elicited a series of blinks within short 319

intervals. Frequent blinking in a short period, known as “blink bursts” [9], 320

could be explained by the short term decrease of the threshold function. 321

In this paper, the proposed model also produced trimodal 322

distributions. The combinations of the parameters that produce the 323

trimodal distributions were not localized but distributed in small regions 324

(Fig. 4). In future research, we will examine whether or not trimodal 325

distributions of IBI can be confirmed experimentally. As one of the cases, 326

we consider a viewing task that requires visual attentions. In such simple 327

perceptional task, we could assume that cognitive load, i.e., I,is almost 328

task-independent, or obey a stochastic process. The saliency and the 329

stimulus value is well controlled and thus the visual attentions are simply 330

regulated by the presentations of visual targets. Here, k and c could be 331

interpreted as individual factors, sensitivity to the external stimuli and 332

tendency to induce blink suppressions, respectively. When a participant’s 333

sensitivity is higher, this is represented as a larger value of k in the model. 334

The parameter c is a decay term and thus if c is larger, the value V tends 335

to fluctuate under the threshold, producing prolonged IBIs. Therefore, 336

larger c corresponds to the tendency to induce blink suppressions. 337

Trimodal distributions might be observed when we change the conditional 338

variables that correspond to k and c in experiments with participants 339

who show bimodal distributions. First, the targets of visual attentions 340

are intermittently presented within 7.5 s, which corresponds to τ . Second, 341

when a participant’s sensitivity k is relatively low, e.g., k = 0.2, the 342

shortest IBI would be averagely 1.6 s when there is no decay c = 0. 343

Meanwhile, a participant has a moderate tendency of blink suppression, 344

in the range of c = 0.41− 0.45, trimodal distributions could be observed. 345

For this participant, the value V fluctuates under the threshold function 346

because decay and the input intensity are well balanced, producing 347
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prolonged IBIs. However, once the threshold is convex downward due to 348

disappearance of targets, the value V must hit the threshold function in 349

several hundred milliseconds, resulting a termination of the prolonged 350

IBI. Two cases would be occurred after the reset. In one case, it takes a 351

few seconds until the V reaches to the threshold again because the 352

previous reset occurred approximately at the maximum value of the 353

threshold function. In another case, short-term sequential blinking is 354

observed if the previous reset occurred at near the minimum value of the 355

threshold function. As the results, prolonged IBI and two types of 356

behaviours after reset would produce the trimodal distributions of IBI. 357

In more complex task, k corresponds to the integration of 358

task-dependent cognitive loads as well as individual sensitivity to the 359

external stimuli. Thus, we need considerations on certain characteristics 360

of the variable threshold when we argue more complex tasks by applying 361

the proposed model. 362

5.2 The variable threshold and biological oscillations 363

The results of numerical simulations in this study suggest that the 364

variable threshold plays a critical role in producing a variety of IBI 365

distributions, especially for the bimodal distribution. Numerous 366

experimental studies have revealed that the blink rates are regulated by 367

internal states of the participants while during performing cognitive tasks 368

(e.g., [6], [11]). While we assumed that the variable threshold represented 369

particular physiological fluctuations, a few plausible candidates of human 370

internal states exist. 371

Researchers have reported that dopamine levels in the brain may 372

influence IBI. For example, pathologic reduction of dopamine induces a 373

lower frequency of blinking and fewer variations of IBI [3]. The blinking 374

ratio rate varies depending on the level of tonic and phasic dopamine [22]. 375

In other words, the frequency of blinking varies in accordance with the 376

innate baseline and transient states of the dopamine levels. As one 377

possibility, one could speculate that the threshold fluctuations in the 378

proposed model correspond to phasic dopamine levels. If this hypothesis 379

is correct, blinking frequencies increase with phasic dopamine levels, 380

reshaping the distributions of IBI. 381

Rhythms of human biological systems such as brain waves [23] and 382

attentional fluctuations [24] could also be candidates. The results of 383

reproduction of the bimodal distributions suggested that relatively slow 384

oscillations (0.11–0.25 Hz) regulate blinks. Recent neurological studies 385

have found delta-band (0.5–4 Hz) blink-related oscillations (BROs) in a 386

resting sate [21]. One study [23] reported that spontaneous blinks 387

activate precuneus regions related to awareness and monitoring of the 388

environment. Physiological fluctuations represented by the threshold 389

function in the proposed model may relate to such brain waves. 390
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5.3 Consistency between the model and the physiological 391

foundations of motor control 392

In the proposed LIF model, V represents the changes in an internal value 393

of a blink generator. Although the location of the blink generator circuit 394

is controversial [3], human blinking must be involved in the general motor 395

control circuits. There is no major contradiction if we assume that the 396

integration of cognitive load may correspond to a direct path of 397

excitatory motor control circuits that increase blinking frequency. On the 398

other hand, inhibitory signals decrease blinking frequency and therefore 399

can provide less frequent blinks, leading variations of IBI [2], [3]. The 400

variations of the threshold would be in accordance with an indirect path 401

of inhibitory motor control circuits. The results on IBI distributions in 402

this paper suggest that a variable threshold can create two or three types 403

of IBI. When we acknowledge the variable threshold in the LIF model 404

corresponds to this inhibitory control, we can argue that human blinking 405

rates vary in a few tens of seconds due to the effect of inhibitory 406

signals [5]. While the LIF models are often used for a neuron, it also 407

seems that the model would be useful to represent human blinking as the 408

macroscopic phenomenon that involves multiple brain areas. 409

6 Conclusion 410

In this paper, we proposed a leaky integrate-and-fire model with a 411

variable threshold to model human spontaneous blinking. The proposed 412

model could reproduce the positively skewed, normal, and peak-less 413

distributions of IBI. Moreover, the proposed model reproduced the 414

bimodal distributions, which could not be reproduced by the OSD model 415

at least within the typical range of parameters. 416

Parameters that reproduce the temporal locations of peaks in the 417

experimental distributions reported by a classical study [18] suggest that 418

relatively slow oscillations (0.11–0.25 Hz) govern blink elicitations. The 419

proposed model also predicts the existence of the trimodal distributions 420

of IBI and the distributions could be produced by the non-specific 421

parameters. As a possible mechanism, we can assume that changes in 422

blink rates would reflect fluctuations of threshold regulated by particular 423

human internal states such as a brain dopamine level or rhythms of 424

human biological system. 425

Supporting information 426
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