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Existing models for glycolytic oscillations are not based on detailed experimental kinetics of the glycolytic
enzymes. Here, a model is constructed to fit the kinetics of skeletal muscle phosphofructokinase with
respect to variations inAMP,ATP, fructose-6-P, and fructose 1,6-P2 levels.AMonod–Wyman–Changeux
model for a tetrameric enzyme is considered. However, it is found that the kinetic data fit considerably
better with an assumption of identical, independent subunits. With parameters that fit these data and with
a previous model for the rest of glycolysis, product activation of phosphofructokinase leads to oscillations
of glycolytic intermediates and [ATP] resembling those observed experimentally in muscle extracts. The
period is several minutes. The model can also produce oscillations at neutral pH and with [ATP]
representative of an intact cell. Under both conditions the mean concentrations and oscillations vary with
the rate of glucose phosphorylation in a plausible manner only if some amount of glucose-6-phosphatase
or glucose-6-P dehydrogenase activity is assumed or if hexokinase is inhibited by glucose-6-P. Also, the
model can be reduced to two variables for ease of analysis and the oscillation mechanism thereby
illustrated.

1. Introduction

It is well known that the rate of glycolysis, and the
concentrations of glycolytic intermediates, oscillate
with a period of minutes (Hess & Boiteaux, 1971;
Richter & Ross, 1981; Mathews & van Holde, 1990).
The kinetics of glycolysis have been extensively studied
in skeletal muscle extract (Tornheim & Lowenstein,
1973; Tornheim & Lowenstein, 1975; Tornheim &
Lowenstein, 1976). Several mathematical models
(Goldbeter & Lefever, 1972; Tornheim, 1979;
Termonia & Ross, 1981; Markus & Hess, 1984) have
been developed to explain glycolytic oscillations. All of
these models rely on product activation of the enzyme
catalyzing the third step in glycolysis, phosphofructok-
inase (PFK), to provide the positive feedback required
for oscillations. The majority of the modeling work
(Goldbeter & Lefever, 1972; Markus & Hess, 1984)
applies more to glycolysis in yeast than in muscle, in

that the authors use product activation by ADP rather
than by fructose 1-6-P2 (FBP).

The early model by Tornheim (1979) reproduces the
oscillations in skeletal muscle extract reasonably well.
It contains simple expressions for the rates of PFK and
glyceraldehyde 3-P dehydrogenase (GPDH). The rate
of PFK is assumed to depend on AMP, FBP, and F6P
concentrations but in a primitive manner. In particular
the dependence on [FBP] is discontinuous. The model
is empirical, rather than derived from a theory of
enzyme structure. Another model, perhaps the most
widely used (Goldbeter & Lefever, 1972; Markus &
Hess, 1984), is based on Monod–Wyman–Changeux
(MWC) (Monod et al., 1965; Cantor & Schimmel,
1980) concerted transition theory for two subunits—
later extended to more subunits (Venieratos &
Goldbeter, 1979). This MWC model only considers the
effects of substrate (fructose-6-P or F6P) and product
(ADP), and not other effectors such as ATP. Although
PFK parameters in this model have an experimental
basis, they are for a different organism (E. coli) than
that where the oscillations modeled occur (yeast).
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Another model (Termonia & Ross, 1981a, b) contains
detailed expressions for the rates of PFK and pyruvate
kinase, also based on MWC theory. However, the
activation of PFK by FBP is not included, and
parameters for this model are obtained from many
sources as opposed to one defined system. Finally,
simulations by Hess and colleagues (Boiteaux et al.,
1975; Markus & Hess, 1984 used essentially the model
of Goldbeter & Lefever (1972) for PFK and often
superimposed a forced oscillation in glucose input rate.
Only the early model of Tornheim (1979) incorporates
mammalian PFK kinetics.

There is clearly a need for a more detailed model
based on the kinetics of mammalian enzymes in
a defined preparation where glycolytic oscillations
occur. However, a comprehensive model for all
the enzymes is difficult to produce because of
complexity and particularly because detailed exper-
imental data for all enzyme rates in such a preparation
have not been assembled. However, such data exist for
the velocity of rat skeletal muscle PFK (Tornheim &
Lowenstein, 1976) purified from extract, and as noted
above, PFK is generally thought to play a key role in
generating oscillations. Thus, there is justification
constructing a model that only treats PFK in detail.

The velocity of muscle PFK depends on many
effectors. The dependencies on AMP, ATP, the
substrate F6P, and the product FBP have been well
characterized in Tornheim & Lowenstein (1976).
Physiologically, the inhibitor citrate and the activators
ADP and inorganic phosphate (Passoneau & Lowry,
1962; Parmeggiani & Bowman, 1963; Bloxham &
Lardy, 1975) and fructose 2,6-P2 (in liver, not muscle)
(Tornheim, 1988) are probably also significant. But the
dependence on these effectors is not well characterized
and it is necessary to avoid excessive complexity, so
these effectors are neglected here. The dependence on
[F6P] is sigmoidal, as is the inhibition by [ATP] (Uyeda
& Racker, 1965). In Tornheim & Lowenstein (1976)
ATP is always saturating as a substrate (Kmca.30 mM;
Ling & Lardy, 1954). The dependencies on [FBP] and
[AMP] appear hyperbolic.

The data of Tornheim & Lowenstein (1976) were
compared with those of other authors. A Michaelis
constant of 0.4 mM (Passoneau & Lowry, 1962) is
reported for F6P in the presence of 2.3 mM ATP, pH
7, which is consistent with Tornheim & Lowenstein
(1976) if allowance is made for the different [ATP]. The
sigmoidicity of the velocity vs. [F6P] relation is
enhanced by inhibitors (Koppelschlager et al., 1968)
and reduced by activators (Bloxham & Lardy, 1975).
The low Ka for AMP activation reported in Tornheim
& Lowenstein (1976) appears to occur with high
inorganic phosphate (Passoneau & Lowry, 1962).

Finally, increasing [FBP] has been reported to increase
Ki for ATP (Passoneau & Lowry, 1962). Thus, the
dataset of Tornheim & Lowenstein (1976) is generally
consistent with other studies. Because of its
comprehensive nature it is used exclusively for
the model fitting herein.

Because the active form of skeletal muscle PFK is
predominantly tetrameric (Parmeggiani et al., 1966;
Mathews & van Holde, 1990) it seems natural to use
either an MWC concerted model, or a sequential
model, to describe its allostery. There is considerable
evidence that an MWC model cannot describe well the
kinetics of PFK (see Discussion). However, such a
model was tried as this type of model is so widely used.

To avoid great complexity, the velocity as a function
of [ATP], [AMP], [F6P] and [FBP] did not explicitly
include heterotropic interactions between ligands.
Experimentally, increased [F6P] appears to tighten the
binding of both FBP and AMP, and increased [AMP],
[F6P] or [FBP] counteracts ATP inhibition. It was
thought that effects of ligands upon the equilibrium
betweenRandT states in anMWCmodelmight suffice
to reproduce these observations. But, this was found
not to be the case.

However, it is shown here that a simple model—that
of identical independent subunits with explicit
heterotropic binding interactions between ligands—
fits the data considerably better than the MWC model.
Although the fit is still not very precise, it is
qualitatively correct.

This PFK model is combined with a basic model
of glycolysis first proposed by Tornheim (1979).
Oscillations similar to those in extract are obtained.
Also, oscillations are obtained under conditions of pH
and total adenine nucleotide concentration similar to
those in an intact cell. The model can then be reduced
to two variables for a phase-plane analysis of the
oscillations. This analysis in particularmakes it evident
that product activation by FBP is central to the
oscillatory mechanism of muscle PFK.

Implications of this model—the first model of
glycolytic oscillations based on a fit of detailed
mammalian PFK kinetics—for slow (timescale of
minutes) oscillations of [ATP] and related quantities
observed in intact mammalian cells such as pancreatic
b-cells or cardiac myocytes, are discussed.

2. Models and Methods

2.1.  -   

Cumulative evidence, reviewed in Uyeda (1991),
suggests that the muscle PFK reaction (in rabbit, and
presumably rat) is well described as a steady-state
Random Bi Bi mechanism with a central ternary
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complex. In general, the velocity expression for
this mechanism is extremely complex (Segel, 1975).
However, in glycolysis the reverse reaction of PFK is
very unfavorable energetically. Also, in vitro with
varying [ATP] and [F6P], the forward reaction has
been fit well with a much simpler velocity expression
(Hanson et al., 1973), of the form appropriate for a
rapid equilibrium random bimolecular reaction,

V=
Vmax[ATP][F6P]

Kd,ATPKm,ATP+Km,ATP[ATP]

+Km,F6P[F6P]+Km,ATPKm,F6P[ATP][F6P]

. (1)

If [ATP] is much greater than its dissociation or
Michaelis constants, as in the cases considered here,
and if we neglect the reverse reaction, the velocity
reduces to

V=
Vmax[F6P]

Km,F6P+[F6P]
(2)

or steady-state, unireactant Michaelis–Menten kin-
etics.

Km,F6P=Kd,F6P would be rapid equilibrium kinetics.
Although this was suggested for PFK in vitro (Kee
& Griffen, 1972), more recent work suggests that Kd,F6P

is about 20–30% of Km,F6P (Bar-Tana & Cleland, 1974).
However, for the current study, rapid equilibrium
seems a reasonable assumption for the following
reasons:

(i) Models using the rapid equilibrium assumption
have fit velocity data for rabbit muscle PFK (Pettigrew
& Frieden, 1979; (Waser et al., 1983) and Plasmodium
berghei PFK (Buckwitz et al., 1988) rather well.

(ii) If rapid equilibrium is not assumed, modeling
the kinetics of enzyme subject to multiple effectors is
very difficult, and it is advantageous if data can be
fitted by a model with fewer adjustable parameters,
whose derivation can be readily understood.

With identical, independent subunits only one
subunit needs consideration. It can bind, or not bind,
AMP, FBP and F6P. Also, there are two sites (in
addition to the catalytic site) where ATP can bind
(Kemp & Krebs, 1967); both sites need to be inhibitory
to give sufficiently steep ATP inhibition. ATP as
substrate is always saturating so will not be explicitly
considered. Then the subunit has 25=32 possible
states. The state with AMP, FBP and F6P bound
and ATP not bound should be the most active.
The velocity of PFK is proportional to the fraction of
PFK in the active state. Assuming rapid equilibrium,
this fraction is determined entirely by binding kinetics.

We denote AMP by L1 and let it bind with
dissociation constant K1 when nothing else is bound,
similarly let L2 and K2 correspond to FBP, L3 and K3

to F6P, and L4 and K4, K5 to ATP with two binding
sites. There are six heterotropic interactions. These
are: binding L1 multiplies K3 by f13Q1 (AMP
activation by tightening binding of F6P); binding L2

multiplies K3 by f23Q1 (FBP activation by tightening
binding of F6P); binding L4 multiplies K1 by f41q1
(ATP inhibition by weakening binding of AMP);
binding L4 multiplies K2 by f42q1 (ATP inhibition by
weakening binding of FBP); and binding L4 multiplies
K3 by f43q1 at one ATP site and f53q1 at the other
(ATP inhibition by weakening binding of F6P). By
elementary thermodynamics, each interaction implies
its converse such that if binding Li multiplies Kj

binding Lj must identically multiply Ki . A state of the
subunit is denoted (abgde), where a is 0 if L1 is not
bound and 1 if L1 is bound, etc, with d and e for the
two ATP sites. The most active state of PFK is
(11100). The 15 other states with F6P bound are each
assumed to have the same ‘‘basal’’ specific activity
whose ratio to that of (11100) is lW1. Let the fraction
of PFK in state (abgde) be denoted wabgde . Then the
velocity is

RPFK=Vmax$w11100+l(Sabdewab1de−w11100)
Sabgdewabgde %. (3)

To calculate the velocity one first divides top and
bottom by w00000,

RPFK=VmaxG
G

G

K

k

w11000

w00000
+l0Sabde

wab1de

w00000
−

w11100

w000001
Sabgde

vabgde

w00000

G
G

G

L

l

. (4)

The ratio wabgde /w00000 is also the ratio of the
concentration of PFK in state (abgde) to concentration
of PFK in state (00000). These ratios can be computed
from ligand concentrations and dissociation constants.
For example, almost immediately from definition,

K1=
w00000[L1]

w10000
(5)

K2=
w10000[L2]

w11000
(6)

f13 f23K3=
w11000[L3]

w11100
. (7)
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To obtain the last of these it is assumed that when
several ligands are bound, heterotropic interactions
multiply together (their free energies add). From these
expressions one obtains successively.

w10000

w00000
=

[L1]
K1

(8)

w11000

w00000
=

[L1]
K1

[L2]
K2

(9)

w11100

w00000
=

[L1]
K1

[L2]
K2

[L3]
f13 f23K3

. (10)

The velocity of PFK often depends sigmoidally
on [F6P] (L3). To incorporate this semiempirically, a
Hill coefficient of 2 is assumed henceforth to describe
F6P binding. Then eqn (7) is modified slightly,

f13 f23K3=
w11000[L2

3 ]
w11100

(11)

as in eqn (10).
All ratios canbe similarly obtained and a generalized

expression, suitable for programming, is obtained.
Since x0=1 for xq0,

wabgde

w00000
=

1
( f13)ag( f23)bg( f41)da( f42)db( f43)dg( f53)eg

×
[L1]a

(K1)a

[L2]b

(K2)b

[L3]2g

(K3)g

[L4]d

(K4)d

[L4]e

(K5)e (12)

From eqns (12) and (3) the rate of PFK can be
obtained.

2.2.  

The assumptions are as follows: tetrameric PFK is
either in the ‘‘R’’ or ‘‘T’’ state and the catalytic rate
constant differs for each state; the subunits can bind
only one each of AMP, ATP as substrate, F6P, FBP, or
inhibitory ATP; dissociation constants differ between
states but there are no heterotropic interactions
between ligands; and only subunits with FBP, ATP,
AMP and F6P bound and inhibitory ATP not bound
are catalytically active. Let L be the ratio of [T] to [R]
in the absence of ligands and kT and kR be the catalytic
rate constants. For ligand i, with concentration Ci and
dissociation constant Ki , define K�i=ci /Ki and also
subscript with R or T. Take inhibitory ATP as ligand
5. Rapid equilibrium is assumed to hold for ATP and
F6P kinetics, and the reverse reaction neglected. These

assumptions determine

RPFK=

kTL$t4

i=1

K�iT(1+K�iT)3%(1+K�5T)3

+kR$t4

i=1

K�iR(1+K�iR)3%(1+K�5R)3

Lt
5

i=1

(1+K�iT)4+t
5

i=1

(1+K�iR)4

(13)

The case of two inhibitory ATP sites was also tried.

2.3.  

For both the MWC and independent-subunit
models of PFK, programs were written that
automatically generated PFK rates for the conditions
of the first five figures of (Tornheim & Lowenstein,
1976). For comparison, the experimental figures
were scanned and their data digitized. Variation of
parameters was first done by trial and error, to obtain
a reasonable fit between experimental points and
theoretical curves. Then parameters were further
optimized by use of the International Mathematical
and Statistical Library minimization subroutine
UMINF (IMSL, 1991), which uses a method of
steepest descent to minimize the sum of squared
differences between the experimental and theoretical
points.

2.4.  

To construct a model of glycolytic oscillations,
Tornheim (1979) is followed. Hexokinase operates at
a constant rate HK and glucose-6-P and F6P are
in equilibrium with [F6P]/[glucose-6-P]=Kgf. The
reactions catalyzed by aldolase and triose phosphate
isomerase always remain near equilibrium so that
the concentration of dihydroxyacetone phosphate
(DHAP) is proportional to z[FBP]. The rate of
glyceraldehyde 3-phosphate dehydrogenase, RGPDH,
is first-order with respect to [DHAP]. The GDPH
reaction is assumed rate-limiting for following steps.
ATP is produced in glycolysis with 2 net ATPs formed
per glucose utilized, and degraded by an unspecified
ATPase. The relations

[ATP]+[ADP]+[AMP]=Atot (14)

[ATP][AMP]
[ADP]2

=KA (15)

are assumed to hold, giving [AMP] and [ADP] if [ATP]
is known.
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These assumptions give a model with three
dependent variables: [ATP], [F6P], and [FBP]:

d[ATP]
dt

=−HK−RPFK−RATPase+2RGPDH (16)

d[F6P]
dt

=
Kgf

1+Kgf
(HK−RPFK) (17)

d[FBP]
dt

=RPFK−1
2RGPDH (18)

with RPFK as given above,

RATPase=kATP[ATP], (19)

and

RGPDH=kGPDHX[FBP]
1 mM $ ADP

KD+ADP% (20)

This last expression is modified from Tornheim (1979)
by adding a Michaelis–Menten term for [ADP].

Numerical integration was done with the Gear
algorithm (Gear, 1967) as implemented in the LSODE
package (Hindmarsh, 1974), and phase-plane analysis
was done with the programs PhasePlane (Ermentrout,
1990) or AUTO (Doedel, 1981).

3. Results

3.1.    



In Tornheim & Lowenstein (1976) an extensive
series of PFK rate measurements for different
combinations of [F6P], [AMP], [ATP], and [FBP]
values is presented, with data taken at pH 6.65, typical
for oscillations in muscle extract, and at pH 7, at which
ATP inhibition is shifted to higher [ATP].

Figure 1 shows one attempt to fit the pH 6.65
data using the MWC model. Here, symbols are
experimental points and lines are theoretical curves.
The fit is very poor—primarily because there are
essentially no heterotropic interactions between
ligands evident in the fit, in particular increased [AMP]
does not effectively counter ATP inhibition and
increased [F6P] does not significantly tighten the
binding of AMP or FBP (i.e. the velocity curves for
different [AMP] or [FBP] do not approach each other
at high [F6P]).

However, Fig. 2 shows a fit using the independent-
subunit model. In this model, increased [F6P] tightens
the binding of AMP and FBP and also inhibits the
binding of ATP, and all three of these interactions are
required to fit qualitatively the data in figure 3 of
Tornheim&Lowenstein (1976). Furthermore, the data

in their figure 2 can only be fit if increased [AMP] and
[FBP] inhibit—and thus shift to the right—the binding
of ATP.

Panels (a)–(c) of Fig. 2 fit data taken at pH 6.65, and
panels (d)–(e) fit data taken at pH 7, thus two sets of
parameters are given, one for each pH. Dissociation
constants for AMP, F6P, and ATP, in each case
without other ligands present, have previously been
estimated by gel filtration (Kemp & Krebs, 1967).
Here, to obtain acceptable data fits, values for the
constants are used which are of the same order as these
estimates, but not identical.

The pH 6.65 fits [panels (a)–(c)] are qualitatively
correct for shapes of curves and directions and scale of
effects, but individual points are not always
well approximated. The rate of PFK at low [FBP]
[panel (b), 0.3 mM FBP] is overestimated. This may be
evidence of cooperativity among subunits, in that the
rate may fall off with a power of [FBP]q1. The rate of
PFK at high [AMP] [panel (a)] is underestimated. Also,
it is evident from the experimental data in panel (c) that
there is greater sigmoidicity of RPFK vs. [F6P] at low
[AMP] or [FBP]. This agrees with Bloxham & Lardy
(1975) but is not fully captured by the model. The pH
7 fit [panels (d)–(e)] differs from the pH 7 data mainly
in that the experimental [ATP] inhibition increases
more rapidly than the model predicts [panel (d)]. ATP
inhibition is shifted to higher [ATP] at
pH 7 [comparing panels (b) and (d)]. Using
higher, or variable, powers of all ligand concen-
trations would allow more exact fits. However, the
model could not then be derived without many ad hoc
assumptions.

For panels (a)–(c), the square root of the average
squared difference between experimental and theoreti-
cal rates, or RMS error, is 0.378 mM min−1; for panels
(d)–(e) it is 0.270 mM min−1. These RMS errors are
respectively 20.6% and 18.5% of the average
experimental rate of their datasets—these are
significant errors, but can be largely interpreted as in
the above paragraph. The sensitivity of fit S can be
defined for parameter p and RMS error E as;

S=
pDE
EDp

.

For fractional Dp(=Dp/p)of 10% in panels (a)–(c),
this varies from 8.0×10−7 for f41 to 2.06 for Vmax.
All parameters except Vmax have S less than 1.
Therefore, the fit is not very sensitive to any individual
parameter. If we take a fractional Dp of 50%, all
parameters except f41, f43, and f53 have Sq0.35, but
these three parameters have SQ0.003. These three
parameters are not well determined by the data, as long
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as they are kept large (q103) the fit is little changed by
varying them.

The fits depend very little on the ‘‘basal’’ PFK rate
parameter l for lQca. 0.07.

3.2.   

The independent-subunit model of PFK was
assigned parameters which fit the pH 6.65 data and
combined with a simple model of glycolysis, as

discussed in Modeling and Methods. With reasonable
values for other enzymatic rate constants, oscillations
in the glycolytic rate and the concentrations of ATP,
F6P and FBP result. They are stable with respect
to variations in initial concentrations. However, the
average value of [F6P] during oscillations is very
sensitive to variations in the hexokinase rate HK.
To understand this, consider that the average PFK rate
must equal HK. If HK drops slightly, [F6P] will drop

F. 1. PFK velocities calculated using the MWC model. Figures 1–3 Tornheim & Lowenstein (1976) are reproduced, top to bottom.
Experimental points of Tornheim and Lowenstein are plotted with symbols corresponding to theirs; theoretical fits are plotted as
smooth curves. Concentrations are given in the legend of Fig. 2. With ATP as substrate ligand 1, F6P ligand 2, FBP ligand 3, AMP ligand 4, and
inhibitory ATP ligand 5; parameters for eqn (12) are: L=3, kT=kR=110 mM min−1, K1T=K1R=5 mM, K2T=100 mM, K2R=66.67 mM,
K3T=0.4 mM, K3R=10 mM, K4T=13.33 mM, K4R=6.67 mM, K5T=K5R=20 mM.
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F. 2. The same PFK rates as in Fig. 1, calculated using the independent-subunit model. Figures 1–3 of Tornheim & Lowenstein (1976),
with experimental data at pH 6.65, are reproduced in order in panels (a)–(c). Figures 4–5 of Tornheim & Lowenstein (1976), with experimental
data at pH 7, are reproduced in order as panels (d)–(e). Experimental points are symbols, theoretical fits smooth curves. For pH 6.65 data,
model parameters are: Vmax=5.75 mM min−1, l=0, f13=0.0829, f23=0.179, f41=3.44×105, f42=2.45, f43=1.73×106, f53=1.53×104,
K1=7.12 mM, K2=2.415 mM, K3=70.3 mM2, K4=K5=1.2 mM. For pH 7 data, parameters are: Vmax=3.54 mM min−1 (×10 for panel E), l=0,
f13=0.186, f23=0.0733, f41=125.7, f42=3.08, f43=2.56×105, f53=6.22×106, K1=3.86 mM, K2=0.8 mM, K3=20.0 (mM)2, K4=K5=1.5 mM.
Ligand concentrations are: Panel (a), [ATP]=0.5 mM, [F6P]=0.1 mM, [FBP] varies, [AMP]=50 mM (q), 20 mM (w), 1 mM for (×). Panel
(b), [ATP] varies, [F6P]=0.1 mM, [FBP]=0.3 mM (r), 1.4 mM (q), 7.9 mM (t), 32.0 mM (w), 84.0 mM (W), 0.3 mM (×). [AMP]=20 mM
except 1 mm (×). Panel (c), [ATP]=0.1 mM (r) and (w), [F6P] varies, [FBP]=32 mM except 1.4 mM (R), [AMP]=20 mM except 1 mM (r).
Panel (d), [ATP] varies, [F6P]=0.1 mM, [FBP]=32 mM for open symbols and 0.3 mM for filled, [AMP]=2 mM for squares, 20 mM for circles,
50 mM for triangles. Panel (e), [ATP]=10 mM, [F6P]=0.1 mM, [FBP] varies, [AMP]=0.1 mM.

until the PFK rate equals HK again. But under these
conditions the average GPDH rate also drops slightly,
so [ATP] is dropping and [AMP] rising, and PFK is
becoming more activated. Thus, [F6P] must drop by a
large amount to give the requisite small decrease in the
PFK rate. The power of [F6P] in the rate law does not
affect this behavior.

This sensitivity can be alleviated by assuming
some glucose-6-P dehydrogenase activity, or
glucose-6-P phosphatase activity (the latter, however,
has not been found inmuscle).Also, product inhibition
of hexokinase could make HK a decreasing
function of [glucose-6-P]. Considering the rapid
glucose-6-P—F6P equilibrium, any of these influences

will keep [F6P] from becoming too large. As an
example, take

RG6Pase=kgp[F6P] (21)

and subtract this term from eqn (17) for d[F6P]/dt.
Then the oscillatory solution shown in Fig. 3 is
obtained. Concentrations, amplitudes, and period are
similar to those in skeletal muscle extract (Tornheim,
1979).

The ‘‘G6Pase activity’’ required to achieve reason-
able control is significant. Specifically, an average of
28% of F6P is lost via RG6Pase under the conditions
of Fig. 3, with the remainder going forward through
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glycolysis. Also, the [ATP]/[ADP] ratio can become
very high, oscillating between 2.8 and 83 (not shown).
Oscillations exist over a very wide range of hexokinase
rates HK, 0.9–64 mM min−1. As HK is varied from 16
to 23 mM min−1, the mean value of [F6P] doubles from
52 to 109 mM. The sensitivity of this mean value could
be decreased further by increasing kgp. The oscillations
are not unduly sensitive to variations of other
parameters.

There is a small l assumed, corresponding to a
‘‘basal’’ PFK rate with F6P bound but AMP not
bound, and/or FBP not bound, and/or inhibitory ATP
bound. This rate must be finite to prevent [FBP] from
tending toward zero, because otherwise, as [FBP] is
decreasedtherateofPFKdecreasesinanapproximately
first-order fashion, while that of GDPH (which con-
sumes FBP) decreases only as the square root of [FBP].

The mechanism of oscillation can be described
heuristically as follows: at the beginning (t=0 sec in
Fig. 3) [FBP] is at a minimum, [F6P] is rising, and
[ATP] is falling. The latter two changes both activate
PFK so [FBP] begins to rise sharply and [F6P] passes
through a maximum. Even as [F6P] falls, PFK
continues to activate further as [FBP] rises. Here, it is
evident that product activation of PFK by FBP is
crucial for oscillations. However, then [ATP] begins to
rise, and [AMP] as a consequence to fall. These two
changes strongly inhibit PFK, as a result [FBP] falls
and [F6P] rises. However, [ATP] remains at a high
plateau for a considerable time, until [FBP] again
reaches a minimum. Then the cycle repeats.

To visualize further the solution structure of a model
such as this, it helps to simplify to two dependent
variables. Then nullclines (curves where the derivative

F. 3. Simulated glycolytic oscillations. PFK parameters are as in Fig. 2 with pH 6.65, except l=0.02 and Vmax=108.0 mM min−1. Other
parameters are: Atot=500 mM, KA=1, HK=21.6 mM min−1, Kgf=0.29, kATP=0.0576 min−1, kGPDH=12.6 mM min−1, kgp=0.0623 min−1,
KD=8 mM.
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F. 4. Geometrical solution structure of the glycolytic oscillator with [ATP] fixed. Parameters as in Fig. 3 except [ATP]=0.44 mM,
Vmax=1.08 mM min−1, and HK and l vary. Along dashed [F6P] nullclines d[F6P]/dt=0, l,=0.4, HK=72 mM min−1 for the left nullcline and
126 mM min−1 for the other. Along heavy solid S-shaped [FBP] nullclines d[FBP]/dt=0, l=0.25 for curve whose lower knee projects farther
to the right and 0.4 for the other. For HK=126 mM min−1 and l=0.25 or 0.4 trajectories are shown with arrows indicating direction of motion.
For HK=72 mM min−1 trajectories go to a stationary state at the intersection of the nullclines.

of one variable is zero) can be plotted in the plane of
these variables. The trajectory always has a clear
relationship to the nullclines. In the case of Fig. 3, the
oscillations of all variables are significant, thus it is not
mathematically evident that setting any one variable
constant will give a system whose behavior resembles
the original system. Nevertheless, it is found
empirically that useful insights can be gained by
examining the nullclines and trajectories of the
two-variable system [eqns (17) and (18)] obtained by
fixing [ATP]. Figure 4 shows two nullcline sets and
trajectories for this system.

The [F6P] nullcline follows a curve of increasing
[FBP] (more activation of PFK by its product) and
decreasing [F6P] (more rapid utilization of F6P as
a result of the increased product activation). The [FBP]
nullcline forms an S-shaped curvewhen plotted against
[F6P]. At low [F6P] the enzyme is very inactive and
[FBP] is low, and at high [F6P], [FBP] is high.
However, at intermediate [F6P] there exist two stable
and one unstable steady states of PFK activity and
consequently of [FBP], because of the activation of
PFK by [FBP]. The existence of the bistable region
depends on RGPDH being proportional to a lesser power
(the square root) of [FBP] than is RPFK. The S shape is

necessary for oscillations, and indeed oscillations
occurwhen the [F6P] nullcline crosses only the unstable
middle branch of the [FBP] nullcline. It is seen that
increasing HK moves the [F6P] nullcline right and does
not change the [FBP] nullcline. One sees that the mean
values of both [F6P] and [FBP] increase. If HK is too
high or too low, the system goes to a stationary state
at the intersection of the [F6P] nullcline with the stable
upper or lower branches of the [FBP] nullcline. Earlier,
in modeling glycolytic oscillations in yeast, Venieratos
& Goldbeter (1979), found similar behavior as the
hexokinase rate was varied.

Figure 4 also shows that increasing l raises the lower
branch of the [FBP] nullcline and brings the right knee
leftward. Then one sees that the amplitude of
oscillations in [F6P] would be reduced, and also
in [FBP], since the trajectory reaches the upper
branch of the [FBP] nullcline more to the left. All these
behaviors are qualitatively as seen in the full system.
Finally, increasing Vmax compresses both nullclines to
the left and down (not shown) and thus is expected to
preserve similar oscillations but at lower [F6P] and
[FBP], which it does in the full system.

If parameters which fit the pH 7 PFK data are used,
similar behavior to that above is obtained. Glycolytic
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oscillations are again produced that are physiologi-
cally reasonable as regards period, amplitude, and
mean concentrations (not shown). A high average
[ATP]/[ADP] ratio is again maintained.

The final case considered is pH 7 PFK parameters
with a total adenine nucleotide concentration of
10 mM and the differential equation for [ATP]
changed to

d[ATP]
dt

=−HK−RPFK−RATPase+
38
2

RGPDH. (22)

This case is more representative of an intact cell, in
which [ATP] is about 10 mM and in which, for each
glucose molecule, approximately 38 ATP molecules
are made and two used for phosphorylation, for a
net yield of 36 ATP’s per glucose. The model again
predicts oscillations which appear physiologically
reasonable, as shown in Fig. 5.

Again some glucose-6-phosphatase activity (or an
analogous process) must be present to avoid undue

sensitivity to HK. [ATP]/[ADP] varies from 3.5 to 182.
Glycolytic parameters are not signficantly different
from the extract simulation (Fig. 3) except that kATP is
higher to balance the faster rate of ATP synthesis, and
all other rate constants are similarly higher.

4. Discussion

A model for phosphofructokinase (PFK) kinetics
has been constructed that is consistent with a
considerable set of experimental rate data, and which
is, in this repsect, a significant improvement over
previous models. It is the first model based on
mammalian PFK kinetics, and cannot be expected to
apply to glycolytic oscillations dependent on, for
example, yeast PFK kinetics. When combined with a
model for the remainder of glycolytic pathway the
model reproduces observed glycolytic rate and
concentration oscillations in skeletal muscle extract
rather well. The model can be simplified to two

F. 5. Simulated glycolytic oscillations. PFK parameters as in Fig. 2 with pH 7, except Vmax=900 mM min−1. Other parameters as in Fig. 3
except: HK=20.8 mM min−1, kATP=0.06 min−1, kGPDH=30 mM min−1, kgp=0.0667 min−1, KD=200 mM, Atot=10.0 mM.
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dependent variables and analyzed in the phase plane to
give a qualitative geometric intuition about the
oscillation mechanism.

The model is not the type usually formulated
for allosteric multisubunit enzymes such as PFK.
However, an MWC model may not be appropriate for
PFK kinetics, as evidenced by the following
observations. Sigmoidicity of the velocity vs. [F6P]
curve appears to require dilution of PFK and
subsequent partial dissociation (Ramaiah & Tejwani,
1970; Donnicke et al., 1972; Bloxham & Lardy, 1975).
Also, antibodies have been found that stabilize the
aggregated, activated form of PFK against dilution or
changes in buffer, and these antibodies also make the
velocity vs [F6P] curve hyperbolic (Donnicke et al.,
1972). Thus the most highly associated form of PFK
appears to have the least sigmoidal kinetics, which
is opposite to the prediction of an MWC model.
Also, activation of muscle PFK by fructose 1,6-P2

vs. fructose 2,6-P2 is affected differently by other
regulatory metabolites, suggesting there is more than
one activated state of PFK (Tornheim, 1985), whereas
a two-state MWC model has one activated and one
relatively inactive state.

Nevertheless, attempts were made to fit the
experimental data with an MWC model and an
acceptable fit could not be obtainedbecause thatmodel
could not account for the observed strong heterotropic
interactions among ligands. It is possible that a very
complex allosteric model, such as a sequential model
of the type developed by (Koshland et al., 1966), could
fit the PFK data because of the large number of states.
However, such a model would be too algebraically
complex to be readily intelligible.

The model constructed here, based on the
assumption of identical independent subunits, includes
interactions among ligands explicitly. [F6P] must enter
the PFK rate expression squared to give sigmoidal
curves of velocity vs. [F6P], and the model cannot
mechanistically account for this dependence—some
degree of cooperativity between subunits is likely to be
responsible for the sigmoidicity. However, with
present knowledge of PFK structure, the semi-empiri-
cal eqn (11) seems reasonable.

The oscillations found with PFK parameters that fit
pH 6.65 data match well those found in skeletal muscle
extract at this pH (Tornheim, 1979). The model
predicts an extensive range of oscillations as glucose,
and thus the hexokinase rate, is varied. There is one
published observation of glycolytic oscillations at
pH 7, with [ATP] about 10 mM, in the extract
(Tornheim, 1988). Those oscillations in [ATP],
[F6P], and [FBP] also are simulated well (Fig. 5) except
for the experimentally observed decrease in

([ATP]+[ADP]+[AMP]) due to adenylate deaminase
activity. In all the simulated oscillations a very high
peak [ATP]/[ADP] ratio is reached. However, in
skeletal muscle extract the peak [ATP]/[ADP] ratio
is 25 or more with the total adenine nucleotide
concentration near 0.5 mM (Tornheim, 1979), and
in muscle in vivo the peak value as indicated by
measured [creatine phosphate]/[creatine] ratios may be
yet higher (Goodman & Lowenstein, 1977).

Also of interest is the fact that for stability of the
model with respect to hexokinase rate variation, some
glucose-6-P must be removed (or made less rapidly) at
a rate increasing with its concentration. Removal of
28% or less suffices. Either glucose-6-phosphatase or
glucose-6-P dehydrogenase may be postulated
to provide this removal. The former enzyme has
only been found in a few tissues, such as liver, and
pancreatic b-cells (Chandramouli et al., 1991), but the
latter is the first enzyme of the pentose phosphate
pathway and is present in many tissues. The
well-known product inhibition of hexokinase by
glucose-6-P could also provide this stabilization.

The model of glycolysis used here can clearly
be elaborated. Also, the assumption that ([ATP]+
[ADP]+[AMP]) remains constant during oscillations
is not borne out in experimental skeletal muscle extract
(Tornheim & Lowenstein, 1973; Tornheim, 1979). To
treat this matter would require modeling the kinetics
of the purine nucleotide cycle, i.e. at least the reactions
of the four enzymes adenylate deaminase, adenylosuc-
cinate synthetase, adenylosuccinase, and myokinase.
Recent skeletal muscle extract experiments (Tornheim,
1988; Andreas et al., 1990) Tornheim et al. (1991) have
further explored the effects of citrate and fructose
2,6-P2, and may allow refinement of the PFK model.

Of interest is the possibility that, in intact cells,
glycolytic oscillations could be responsible for slow
oscillations in the [ATP]/[ADP] ratio or related
quantities such as the [NAD]/[NADH] ratio. Also, the
cytoplasmic calcium concentration could be related
to the [ATP]/[ADP] ratio through effects on
ATP-dependent calcium pumps or, in excitable cells,
through oscillations in the conductance of ATP-gated
potassium channels and resultant oscillations in the
membrane potential and in the activity of voltage-
gated calcium channels. Most calcium oscillations
reported in intact cells have periods of 1 min or less but
there are a few examples (hepatocytes, endothelial
cells, pancreatic acinar cells) in which periods of 2 min
or more have been observed (Berridge & Galione,
1988). Perhaps glycolytic oscillations could underlie
some slow calcium oscillations. Very recently there has
been a report of oscillations of ATP-sensitive current
and pyridine nucleotide levels in cardiac myocytes
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(O’Rourke et al., 1994), which the authors suggest are
due to glycolytic oscillations. Of particular interest is
that in pancreatic b-cells in the islets of Langerhans,
such calcium oscillations have been reported (Valde-
olmillos et al., 1989; Gylfe et al., 1991), along with
oscillations in oxygen consumption and insulin
secretion (Longo et al., 1991), all with a period of
around 5–20 min. Theoretical investigations (P.
Smolen, unpublished) have identified glycolytic
oscillations as a possible mechanism for explaining the
oscillations in this cell type.
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