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ABSTRACT Based on the existence of
ATP-sensitive potassium channels in
the plasma membrane of pancreatic
beta cells, we develop a quantitative
explanation of the electrical activity
observed in pancreatic islets. The pro-
posed mechanism involves the voltage-
dependent inward calcium and outward
potassium currents described by Rors-
man and Trube (1986), which are volt-
age-activated when an increase in the
cytoplasmic ATP/ADP ratio decreases
the conductance of the ATP-sensitive

potassium channels. It is proposed that
modulation of the ATP/ADP ratio
occurs through calcium inhibition of oxi-
dative phosphorylation. In this picture
the mitochondria serve as a transducer
of metabolic activity whose sensitivity is
modulated by cytosolic calcium. Solu-

tion of the differential equations that

describe this mechanism gives rise to
both bursting and continuous spiking
electrical activity similar to that ob-
served experimentally. While the mech-
anism for bursting in this model involves

the ATP/ADRP ratio, the feedback is still
provided by caicium, as originally pro-
posed by Chay and Keizer (1983) using
a Ca®*-activated potassium conduc-
tance. A mixed-model, which includes
both ATP-sensitive and Ca®*-activated
potassium conductances, also repro-
duces the experimentally observed
electrical activity and may correspond
more closely to the actual situation in
vivo.

. INTRODUCTION

The pancreatic beta cell, when perfused with glucose in
intact islets, exhibits a characteristic pattern of electrical
activity called bursting. This phenomenon was discovered
by Dean and Matthews (1970) using microelectrodes and
has been the subject of intense experimental investigation
in the intervening years (see Atwater et al., 1980, 1987
for recent reviews). Bursting consists of an active phase at
a plasma membrane potential of ~ —25 mV, where rapid
spikes of electrical activity are observed, and a silent
phase at ~ —60 mV, where the potential rises very slowly.
The silent phase alternates rhythmically with the active
phase producing an overall period of the order of 15 s. The
duration of the active phase has been shown to be related
to the rate of glucose-stimulated insulin release in single
islets (Meissner, 1976), and it is widely speculated that
the uptake of Ca?* that occurs during the active phase is
involved in insulin granule exocytosis (Rubin, 1982; Woll-
heim and Sharp, 1981).

Several mechanisms have been proposed to explain
bursting activity in the beta cell. Based on pharmacolog-
ical evidence, Atwater, Rojas, and collaborators (Atwater
et al., 1979 and 1980) proposed that a calcium-activated
potassium conductance in the plasma membrane was
responsible for switching the membrane potential
between the depolarized active and hyperpolarized silent
phase. In this picture, the active phase consists of rapid
action-potential-like spikes involving an outward K* cur-

rent and an inward Ca®* current. Spiking causes Ca** to
accumulate in the cytosol, and when the Ca?* concentra-
tion is high enough, the Ca%*-activated potassium con-
ductance repolarizes the membrane, thereby shutting off
the voltage-gated K* and Ca®* currents that are responsi-
ble for the spiking activity. Ultimately, the slow, but
perpetual, removal of Ca?* from the cytosol depolarizes
the plasma membrane to such an extent that the voltage-
gated channels are reactivated and the cycle continues.
Translating these ideas into a quantitative molecular
mechanism, Chay and Keizer (1983) developed a so-
called minimal model that explains many of the observed
features of the glucose-induced electrical activity in the
beta cell.

The molecular basis of this proposed mechanism was
solidified by the discovery of Ca®*-activated potassium
channels in the plasma membrane of the beta cell (Cook
et al, 1984) and by the documentation of voltage-
regulated K* and Ca®* conductances in the beta cell that
are capable of supporting action-potential spikes near
—25 mV (Rorsman and Trube, 1986). Unfortunately,
while the unitary conductance of the calcium-activated
potassium channels is large, these channels are almost
always closed under physiological conditions (Findlay et
al., 1985). Thus, doubt has been expressed that these
channels can carry sufficient current to trigger the repo-
larization of the silent phase. Because ionic currents in the
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beta cell are small and delicately balanced, it is still
possible to imagine that an average number of only one or
two open Ca**-activated potassium per cell are sufficient
to trigger bursting in coupled islet cells (Sherman et al.,
1988).

Theoretical work by Chay has offered several other
possible mechanisms for the triggering of bursting in the
beta cell. Because the Ca®*-activated potassium conduc-
tance is voltage-dependent, it has been proposed (Chay,
1986) that this channel, rather than the delayed rectifier,
carries the outward current during the active phase. It has
also been proposed that Ca’*-inactivation of the inward
calcium current (Chay, 1987), which has been observed
experimentally in the beta cell (Plant, 1987), is responsi-
ble for the repolarization of the active phase, or that,
perhaps, two calcium currents, one inactivated by calcium
and the other not (Chay and Cook, 1988), are involved in
bursting.

Another type of potassium channel, whose conductance
is sensitive to ATP and ADP, has recently been docu-
mented in beta cells and other insulin secreting cell lines
(Cook and Hales, 1984; Ashcroft et al., 1984; Misler et
al., 1986; Rorsman and Trube, 1985; Ashcroft, 1987).
These channels have a smaller unitary conductance but
are more numerous (=750/cell) than the Ca?*-activated
potassium channels. On the other hand, they are inacti-
vated by ATP in detached patches, which is thought to
explain their rapid inactivation by glucose in cell-
attached patches. Recently, several groups have noted
that ADP, when applied in physiological concentrations,
can partially restore the activity of the ATP-sensitive
potassium channel (Kakei et al., 1986; Dunne and Peter-
son, 1986; Ribalet and Ciani, 1986; Dunne et al., 1988).
Because the activity of these channels is thus associated
with glucose metabolism, it has been suggested that these
channels may constitute a metabolic sensor for insulin
release. Theoretical work using a glucose-inactivated
potassium conductance further reinforces this idea (Rin-
zel et al., 1987).

Modulation of the activity of the ATP-sensitive chan-
nel by ADP has suggested another possible role for these
channels in the beta cell (Misler et al., 1986; Keizer,
1988; Dunne et al., 1988). By responding to changes in
the cytosolic ratio of ATP to ADP, the magnitude of their
current may help control the duration of the active phase
of bursting. For this suggestion to be plausible, cytosolic
calcium, made available through the voltage-gated cal-
cium channels would need to serve as a second messenger,
decreasing the cytosolic ATP/ADP ratio. Because the
concentrations of ATP and ADP are the order of millimo-
lar in the beta cell (Kakei et al., 1986), the change in
calcium concentration, which is the order of 0.2 uM,
would need to be amplified some three to four orders of

magnitude in order to modify the ATP/ADP ratio
enough to affect the potassium conductance.

Here we investigate theoretically the possibility that
calcium serves as a second messenger for activation and
deactivation of the ATP/ADP modulated potassium
channel during bursting (Keizer, 1988). In doing so we
rely on experimental observations of the stimulating
effect of ADP on the ATP-sensitive potassium channel
(Kakei et al., 1986), the data of Rorsman and Trube
(1986) to describe the voltage-gated calcium and potas-
sium channels, and patch-clamp experiments on ATP-
sensitive potassium channels to describe their current
carrying properties (Misler et al.,, 1986; Rorsman and
Trube, 1985). We examine several possible mechanisms
by which cytosolic calcium could affect the cytosolic
ATP/ADP ratio and conclude that the cycling of Ca®*
through the mitochondria via oxidative phosphorylation
might provide sufficient amplification of the Ca** signal.
We translate these ideas into a set of ordinary differential
equations that describe the electrical activity of a islet
cell. An analysis of these equations shows that they can
support multiple steady states, action potential spikes,
and, under appropriate conditions, bursting. The equa-
tions are solved numerically using physiologically reason-
able parameters and the resulting electrical activity is
found to be compatible with experiment, including glu-
cose sensitivity. We embellish our calculations by adding
the effect of Ca’*-activated potassium channels. In the
presence of both the ATP/ADP and Ca’* modulated
channels, we find reasonable bursting behavior, and con-
clude that a mixture of these two types of channels may be
responsible for the triggering of bursting in vivo.

Il. MODULATION OF ATP-SENSITIVE
POTASSIUM CHANNEL

The conductance of the ATP-sensitive potassium chan-
nels in rat and mice beta cells has been found to depend on
cytosolic ATP and ADP concentrations (Misler et al.,
1986; Kakei et al.,, 1986; Dunne and Peterson, 1986;
Ribalet and Ciani, 1987). ATP has a dual effect (Ohno-
Shosaku et al., 1987). Initial challenges with micromolar
to millimolar concentrations of ATP cause a substantial
increase in closed time durations, thus decreasing the
average conductance, without modifying unitary conduc-
tances. In the absence of MgATP, however, the channels
experience “run down” of activity (Misler et al., 1986), a
phenomenon that can be reversed by exposure to MgATP.
The first effect is immediate and appears to be due to the
binding of ATP to a regulatory site on the channel. The
second phenomenon involves a longer time scale and may
involve phosphorylation of the channel. As long as Mg?*
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FIGURE1 The solid lines represent fraction of open ATP-sensitive
potassium channels as a function of the logarithm of the ATP concentra-
tion in millimolar as derived from Eq. 1 with K, = 0.45 mM and K, =
0.012 mM at ADP concentrations, [D], of 0 mM and 2 mM. The solid
and open circles are measured data taken from Kakei et al. (1986).

ions are absent, the refreshment effect of ATP is not
observed.

In the absence of ATP, millimolar concentrations of
ADP also block the ATP-sensitive channel, while AMP
has no discernible effect (Misler et al., 1986; Ribalet and
Ciani, 1987). The action of ADP in the presence of ATP
is quite different: ADP shifts the dose-response curve of
current versus ATP concentrations to the right, thus
desensitizing the channel to inhibition by ATP. This is
illustrated in Fig. 1, where the data points are taken from
Kakei et. al. (1986) and the smooth curves are drawn
according to the formula:

1+ DI/K,
1+ [DI/K, + [T)/K;’

ifi (1)
where [D] and [T] are the concentrations of ADP and
ATP, respectively, in millimolar units. Eq. 1 is appropri-
ate for a mechanism involving competitive binding of
ADP and ATP to the channel in which only the unbound
state and the state with ADP bound are conducting. For a
fixed concentration of ATP, Eq. 1 shows that the ATP/
ADP ratio modulates the current through those channels
such that a decrease in this ratio increases the current.
For concentrations of ATP above 0.1 M, the fit with
experiment is rather good, suggesting that competitive
binding may be responsible for the desensitization of ATP
by ADP.

In order for the desensitization of ATP by ADP to have
an effect on electrical activity, it is necessary that one of
the quantities involved in bursing modulate the ATP/
ADP ratio. Indeed, the modulation must change the ADP
concentration by the order of 0.1 mM or more because
otherwise the effect on the dose response curve would be
negligible (cf. Fig. 1). There is no evidence that the

plasma membrane potential affects the ATP/ADP ratio
and because the potassium concentration of the cells is
effectively constant, one is left to consider the cytosolic
calcium concentration. Although calcium affects the
ATP/ADP ratio when pumped out of the cytosol by
membrane bound calcium-ATPases, the net turn over of
ATP is stoichiometric with calcium (McDaniel et al.,
1985). Thus the action of these pumps can at most
account for micromolar increases in ADP because at most
micromolar changes in calcium occur in the cytosol
during a burst of electrical activity. Indeed, to achieve the
order of a 0.1 mM increase in ADP would require an
effect of calcium on the primary mechanisms of ATP
homeostasis in the cell.

In the beta cell both glycolysis and oxidative phosphor-
ylation are involved in the production of ATP from
glucose (Malaisse et al., 1983). Moreover, metabolites
that are produced subsequent to glycolysis are known to
mimic the stimulation of electrical activity by glucose.
This suggests that if the modulation of the ATP/ADP
ratio is involved in electrical activity, then the modulation
probably occurs in the mitochondria.

There is other direct evidence that the mitochondria
are involved in the control of electrical activity in the
pancreatic beta cell. Indeed, the mitochondrial uncou-
plers carbonylcyamide trifluorpheylhydrazon (FCCP)
and carbonylcyamide trichlorophenylhydrazone
(CCCP), which short-circuit the proton motive force,
have the effect of eliminating glucose-induced bursting by
hyperpolarizing beta cells in whole islet preparations
(Atwater et al., 1979). This has been interpreted as
resulting from an increase in cytosolic calcium due to the
elimination of calcium uptake by the mitochondria which,
in turn, stimulates calcium-activated potassium channels
in the plasma membrane. An alternative interpretation
(Misler et al., 1986) is that disruption of the proton
motive force by FCCP or CCCP, which decreases the
ATP/ADP ratio by inhibiting oxidative phosphorylation,
results in stimulation of ATP-sensitive potassium chan-
nels.

The mitochondria, in fact, are known to take-up and
release calcium in the presence of the mitochondrial
proton motive force (Carafoli and Crompton, 1977;
Nicholls, 1982). The uptake and release occur through
separate transporters, and at physiological calcium con-
centrations this leads predominately to a futile cycling of
calcium. Because the futile cycling of calcium dissipates
free energy that would normally be used in the synthesis
of ATP, it seems plausible (Nicholls, 1982) that increases
in cytosolic calcium, which increase the uptake rate, will
slow the rate of ATP synthesis from ADP. Indeed, recent
experiments in Limulus ventral photoreceptors (Fein and
Tsacopoulos, 1988) have established that cytosolic cal-
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cium stimulates rapid uptake of O, by mitochondria,
which may be an indication of an uptake of calcium at the
expense of ATP synthesis. Because the uptake of calcium
and the synthesis of ATP both depend on the proton
motive force, we are led to write the rate of mitochondrial
synthesis of ATP in the canonical thermodynamic form
(Keizer, 1987) as:

Rate = Q exp ( RT

) exp (#ape/RT), 2)

where R and F are the gas and Faraday constants, T the
absolute temperature, © is the intrinsic rate of synthesis,
Apy + FA¢ is the proton motive force across the inner
mitochondrial membrane, and u,pp is the chemical poten-
tial of the ADP in the matrix. Assuming that the proton
motive force decreases with increasing calcium concen-
tration, ¢, we expand the argument of the first exponential
in a Taylor series and find that to first order the rate can
be written as

Rate = @ exp (r'[1 —~ ¢/r(]) exp (uapp/RT), (3)

where r’ and r| are positive. Because r’ is proportional to
the proton motive force at low calcium, it will depend on
the metabolic fuels creating the proton motive force. In
particular, it should be an increasing function of glucose.
The other parameter, r}, determines the concentration
range in which the effect of calcium on the mitochondria
is appreciable, which we expect to be of the order of
micromolar. Eq. 3 can be further simplified if we assume
that the ADP in the matrix rapidly equilibrates with ADP
in the cytosol so that u,pp = e =~ u° + RTIn[D]. Thus
defining k' = Q exp (u°/RT), Eq. 3 can be written:

Rate = K" exp (#'[1 — ¢/r{])[D]. 4)

In Appendix A we show how to use Eq. 4 to write the
approximate rate of change of cytosolic ADP concentra-
tion as:

d[D]/dt = —kexp (r[1 — ¢/r,])[D] + k([A] — [D]), (5)

where k' = kexp(a), ” =r + a,and r{ = r,r'/r. The
second term takes into account the hydrolysis of ATP to
ADP and P, by reactions in the cytosol and [A] = [T] +
[D] is treated as a constant. Eq. 5 is approximate for
many reasons, including the neglect of glycolysis and the
stimulation and/or inhibition of glycolysis by ATP, ADP,
and AMP. Because it is impossible to characterize these
phenomena without introducing a significant number of
additional kinetic parameters, we restrict our character-
ization of ADP kinetics in the cytosol to Eq. 5. Note that
the parameter » = r' — a is an increasing function of
glucose because r’ is proportional to the proton motive
force at low calcium concentration. Note also that the
parameters r and r, determine to what extent the calcium

signal will be amplified as it is transduced by the mito-
chondria into an ADP signal. According to Eq. 5, the rate
of production of ATP from ADP decreases exponentially
with the factor exp (—rc/r,). Thus changes in the cal-
cium concentration must be of the order 7, /r in order to
have a significant effect on the ATP/ADP ratio.

Ilil. MATHEMATICAL DESCRIPTION OF
ELECTRICAL ACTIVITY

The effect of the ATP-sensitive channel on the behavior
of the beta cell will be treated using an electrical circuit
analogy like that employed in earlier descriptions of the
beta cell (Chay and Keizer, 1983). This description
appears to be appropriate for beta cells in intact islets or
coupled together as clusters in vitro (Sherman et al.,
1988). In this analogy the cell membrane is treated as a
capacitive element with ion channels connected in parallel
serving as resistors, each driven by the electromotive force
resulting from the Nernst potential of the transported ion.
Thus using Kirchoff’s laws the transmembrane voltage,
V = ¢in — dou» Satisfies the equation

CWWH—;&Munh—Zap (6)
L k.j

where C is the capacitance, g, ; is the conductance of the
ions of kind k through channels of kind j and V, is the
Nernst potential

Vi = (RT/nF) In ({KJow/[k}ia), 4)

with n the charge of the ion. The conductances, g, ;, are
proportional to the total number of channels of kind j,
which is assumed to be large so that the effect of single ion
channel events can be neglected. Three types of conduc-
tances are used in our description: The voltage activated
potassium and calcium ion conductances characterized by
Rorsman and Trube (1986) and the ATP-sensitive potas-
sium channel. As discussed in the preceding section, the
activity of the ATP-sensitive channel is modulated by the
ATP/ADP ratio according to Eq. 1. Thus because its
conductance is voltage independent, we can write

o (1 + [DI/K\)(¥ - Vi)
xaTe = BT TU(DI/K, + ([A] = [DD/K; "

®

where [A] = [T] + [D]. The value of gx o1p per cell can
be estimated from the unitary conductance in physiolog-
ical conditions (10—15 pS [Arkhammar et al., 1987]) and
the number of channels (400-700 per cell [Rorsman and
Trube, 1985]) to be in the range 4,000-10,000 pS. We
chose a value of 7,500 pS. The values of K, and K, that fit
the data of Kakei et al. (1986) in Fig. 1 are K, = 0.45 and
K, =0.012.

232 Biophysical Journal

Volume 56 August 1989



The voltage-activated potassium and calcium currents
have been modeled in several different ways. We follow
the lead of Sherman et al. (1988) who neglect the calcium
inhibition of the calcium conductance, but add to their
description the long-time scale (2.6 s) inhibition of the
potassium channel (Rorsman and Trube, 1986) by intro-
ducing the time and voltage dependent inhibition, I. Thus
we write

Ixy = 8xynl(V — V). )
Icay = Beay M (VIR(VI(V = Ve,), (10)

where 7 is the time and voltage-dependent activation for
the potassium channel; m_ (V) is the voltage-dependent
activation of the calcium channel, taken as independent of
time because of its rapid relaxation time (0.15-1.5 ms);
and h(V) is a voltage dependent factor to improve the fit
of the current-voltage curves with experiment (Sherman
et al.,, 1988). The time-dependent activation, n, and
inactivation, I, satisfy the usual relaxation equations

dn/dt = —[n — n(V)]/7,(V) (11)

dijdt = —[I — IL(V)]/~. (12)

Since Rorsman and Trube (1986) find 7 to be 2.6 s and do
not report its dependence on voltage, we have taken 7 to be
a constant. The mathematical expressions used to fit
experimental measurements (Rorsman and Trube, 1986)
for m(V), h(V), n.(V), 7,(V), and I.(V) are given in
Appendix B.

To complete the dynamical description, we use Eq. S to
describe the rate of change to [D] and [T] = [A] — [D],
the concentration of ADP and ATP, respectively, and
introduce the usual balance equation (Chay and Keizer,
1983) to describe the change in cytosolic calcium, c:

f'de/dt = —ale, — ke (13)

In this equation the factor a = 3,000/8% R*F with R the
radius of a cell (in micrometers) converts current (in fA)
to concentration per unit time (in micromole/millisec-
ond); fis the fraction of calcium that is free in the cytosol;
and k¢, is the first order rate constant for extrusion of
calcium from the cytosol.

Egs. 5-13 differ in several ways from previous differen-
tial equations used to describe the beta cell. First, the
calcium concentration does not have a direct feed back
onto a potassium current, but, instead, effects the ATP/
ADP ratio through Eq. 5, which in turn modulates the

current in the ATP-sensitive potassium channel. Thus .

instead of a single variable, there are two variables in the
feed back link, ¢ and [D]. Calcium, as Rinzel (1985) has
pointed out, is a “‘slow™ variable whose characteristic time
scale is set by the parameter, f, to be the order of a second.
The parameter k in Eq. 5 sets the time scale for the

concentration of ADP. When k< 107* ms~! then [D] is
also a slow variable, whereas when k > 1 ms™! it varies on
a characteristic time scale of milliseconds and so is a
“fast” variable. Because it is coupled directly only to the
slow variable, ¢, if [D] is fast, then it rapidly adjusts its
value so that the left hand side of Eq. 5 vanishes, giving

(A]

(D] - 1 +exp [r(1 —¢/r)]’

(14)

Accordingly, when k is large [D] is so tightly coupled to ¢
that its instantaneous value is determined by the func-
tional relationship in Eq. 14. Note that in this situation
[D] is an increasing function of ¢. Thus as ¢ increases, the
ATP/ADP ratio decreases, leading via Eq. 8 to an
activation of the current carried by the ATP-sensitive
potassium channel. Indeed, for the values of r, = 0.5 uM
and r =~ 1 used in the calculations that follow, [D] and ¢
are approximately linearly related in the physiological
regime of concentrations with a slope d[D]/dc =~ 3
mM/uM. This provides the amplification of the calcium
signal from the micromolar concentration range to the
millimolar range of ADP.

The original proposal for calcium feed back on elec-
trical activity involved direct activation of a potassium
conductance by calcium (Atwater et al., 1980; Chay and
Keizer, 1983). Following Plant (1978), that has been
modeled by the following simplified current expression

= (c/Kp)(V — Vi)

Ixca = Bxca 1+ c/K (15)
D

While there is evidence that this current is voltage-
dependent (Findlay et al., 1985), present data suggests
that this effect is small in the physiological regime. It
seems likely that both the ATP-sensitive and calcium-
activated potassium channels carry current during burst-
ing, and we examine their combined effect in Section V.

IV. ANALYSIS OF DYNAMICAL
EQUATIONS

The dynamical equations that describe the membrane
potential of the beta cell in this model are given in Eqs.
7-13, 1-B, and 2-B. Following Rinzel (1985) we analyze
their behavior in terms of fast and slow subsystems of
equations. To simplify this analysis somewhat we assume
that the parameter k is sufficiently large (k > 1 ms™')
that Eq. 14 is valid. This leaves two variables in the fast
subsystem, n and V. Their characteristic time constants
are the order of 20-40 ms, as can be estimated from Eqgs.
8-10, B-1, and B-2 using the parameters and “typical”
values of the variables given in Table 1. The slow
variables are [c] and I. However, under the assumption
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TABLE 1 Standard parameter values and typical values
of variables*

Parameters?

A Total ATP + ADP 5SmM
gk atr  Maximal conductance per cell,

ATP sensitive K* channels 7,500 pS
K, ADP binding constant,

ATP-sensitive K* channels 0.45 mM
K, ATP binding constant,

ATP-sensitive K* channels 0.012 mM
Bx.v Maximal conductance per cell,

voltage-gated K* channels 2,500 pS
Bea v Maximal! conductance per cell,

voltage-gated Ca®* channels 1,400 pS
Bx.ca Maximal conductance per cell,

Ca’*-activated K* channels 35,000 pS
Kp Ca?* binding constant,

Ca**-activated channels 100 uM
A Dimensionless time constant

parameter for voltage-gated

K* channels 1.5
C Capacitance of beta cell 5310 fF
R Radius of beta cell 6.5 um
f Fraction of Ca’* that is free 0.001
r Glucose-sensitive mitochondrial

rate parameter 1.5
r Calcium-sensitivity of

mitochondrial proton-motive

force 0.5uM
k Rate constant for ATP

hydrolysis 10 ms™!
T Time constant for inactivation,

1 26s
Vi Nernst potential for K* —-75mV
Ve Nernst potential for Ca®* 110 mV
kca Rate constant for Ca®* uptake 0.06 ms™!

Variables

1 4 Membrane potential —60 mV to —20 mV
c Cytosolic free calcium

concentration 0.1 uM t0 0.4 uM
[D] Cytosolic ADP concentration 2.0mMto 2.1 mM
n Activation of gy 0.0002 to 0.16
1 Inactivation of gg 0.85t00.95

*See Sherman et al. (1988), Rorsman and Trube (1986), and the
discussion in Section I11.
*Values of other channel parameters given in Appendix B.

that k is'large, [D] takes the place of ¢ as a slow variable.
Indeed, Egs. 13 and 14 imply that

d[D]/d¢
_[Al(r/r) exp [r(} —¢/r)]f

o+ exp [r(1 — ¢/r)]F (e -

kCac)$ (16)

where c is the function of [D] obtained by inverting Eq.
14. Because the factors (r/r') and exponentials are near
unity, it follows that f determines the time scale for the
relaxation of {D], which is the order of seconds. Thus [D]
now appears as a slow variable with a relaxation time

comparable to I, namely, 7 = 2.6 s. Because the charac-
teristic relaxation times for the fast (n and V) and slow
([D] and I) variables are separated by nearly two orders
of magnitude, the dynamical states of the entire system of
equations can be analyzed by treating the slow variables,
[D] and I, as fixed parameters in the first subsystem, V'
and n. Once the parametric behavior of the fast system is
known, superimposing the slow dynamics of [D] and [
generally provides a simple understanding of the behavior
of the complete system.

The primary advantage of the separation into fast and
slow variables is that it allows one to analyze a complex
dynamical problem using its fast and slow components,
each of which is generally simpler to understand. For
example, for the Chay-Keizer model (Rinzel, 1985) the
fast-slow analysis explicitly shows that the dynamics of
the active phase are dominated by potassium-calcium
action potential spikes, while the magnitude of the burst-
ing period is dominated by calcium handling mechanisms.
The fast-slow separation is particularly useful for the
present mechanism, which is complicated by the presence
of two fast and two slow variables.

The dynamical behavior of the complete system of
equations, integrated using the PLOD implementation
(Kahaner and Barnett, 1988) of the Gear algorithm
(Hindmarsh, 1974), is shown in Fig. 2 for three sets of
values of the glucose dependent parameter r. As this
parameter is increased, corresponding to an increase in
the concentration of glucose, there is a change in the
pattern of voltage oscillations from bursting with a long
silent phase (r = 1.0), to bursting with a short silent phase
(r = 1.5), to continuous spiking (r = 2.0). For smaller
values of r (low glucose) the voltage is polarized to a
constant value of ~—65 mV, while for significantly larger
values of r one finds continuous spiking of higher frequen-
cies. In Fig. 2 we have also plotted the calcium and ADP
concentrations during bursting and spiking. As r is
increased the average concentration of ADP stays in the
range of 2.05 to 2.08 mM while the average calcium
concentration increased by ~!5. We note, also, that the
frequency of the action potential spikes decreases towards
the end of a burst, as found both experimentally and in
other models of beta cell electrical activity. From the data
in these figures we can estimate using Eq. 1 that only
1-2% of the ATP-sensitive channels are open during
bursting, which is compatible with data from patch clamp
experiments showing that glucose greatly reduces the
fraction of open channels in cell attached patches (Ark-
hammer et al., 1987; Ribalet and Ciani, 1987). While the
calculations in Fig. 2 were carried out with the parameter
k= 10 ms~!, only minor differences were found when k
was decreased by up to four orders of magnitude.

The application of Rinzel’s slow and fast variable
analysis to understand this dynamical behavior is straight
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forward (Rinzel, 1985; Rinzel and Lee, 1987). To do so
we first treat the slow variables I and [D] as constants and
determine the steady state voltage as a function of {D]
with I as a parameter. This is accomplished by setting the
left hand sides of Egs. 6 and 11 equal to zero, which leads
to the typical z-shaped curves shown in Fig. 3 a for I =
0.00, 0.50, and 1.00. The stability of these states can be
tested using the dynamical equations for the fast variables
(V and n) with I and [D] fixed. We have used both direct
integration of the equations of motion (the Gear algo-
rithm) and the automated bifurcation program, AUTO
(Doedel, 1981), for this purpose. One finds that the
steady states on the central branch (between the two
knees of the z-curve) are unstable (dashed lines) for all
values of I, while the low voltage branch of steady states
(to the right of the lower knee) are stable ( full line). For
states on the upper branch the situation is more compli-
cated. For example, when I = 0.30 some of the states,
those lying to the right of a Hopf bifurcation point (open
circle), are unstable. To the left of the Hopf bifurcation

0.00

mVolts

5.00 1.00

[D]/mM

mVolts

V

oscillations are damped and the steady states are stable,
while to the right of the Hopf point the damping disap-
pears and stable oscillations in n and ¥V occur. For I = 0.30
there is another interesting point to the right of the Hopf
point called a homoclinic point. This point is defined by
the intersection of the V-n limit cycle (for fixed [D] and
I) with the central branch of unstable status. For I = 0.50
and 1.00 the homoclinic points are indicated in Fig. 3 a by
closed circles. As [D] approaches the homoclinic point
from below, the period of the oscillations grows to infini-
ty.
If Iis increased well above 0.30, the Hopf point moves
to the left to smaller values of [D] and the homoclinic
point moves down along the central branch of the z-curve.
For example, at I = 0.50, [D]yo = 1.97 and [D]yome =
2.21, while at I = 1.00 [D]yq, is negative and [D]y,y, is
2.09. For I = 0.30 the maximum amplitude of the limit
cycle spikes depends on the value of [D], increasing from
zero at the Hopf points to values near the homoclinic
points of 24 mV for I = 0.50 and 29 mV for I = 1.00.

mVolts

[D]/mM

mVolts

V

FIGURE3 (a) The z-curves for I = 0.00, 0.50, and 1.00 obtained by setting the right-hand-side of Eqs. 6 and 11 equal to zero and solving for Vas a
function of [D], i.e., the intersections of the V- and n-isoclines for various fixed values of / with other parameters as described in the text. The dashed
lines represent unstable steady states at fixed [D], while the full lines are stable. The open circle is the Hopf point for I = 0.50 and the filled circles are
homoclinic points for 7 = 0.50 and / = 1.00. (b) The [D]-isocline obtained by setting the right-hand-side of Eq. 5 equal to zero. Superimposed on this is
the z-curve for / = 1.00, which intersects the [D]-isocline at an unstable steady state. The burst trajectory for 7 =1 has also been included in the figure.
() The I-isocline obtained by setting the right-hand-side of Eq. 12 equal to zero. (d) The z-shaped curve obtained by setting the right-hand-side of
Eqs. 6, 11, and 12 equal to zero, i.c., the intersection of the V-, n-, and I-isoclines projected into the V-[D] plane.
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This behavior of the fast system of ¥ and n allows one
to understand why bursting appears in this model. The
reason is simple, essentially that found by Rinzel (1985),
except in the present case there are two slow variables, /
and [D]. Consider, first, the case that [/ is fixed and large
enough (/ = 0.30) so that the Hopf point on the upper
branch is to the left of both the lower knee and the
homoclinic point, which is to the right of the lower knee
(cf. Fig. 3 a). The curve on which d[D]/d¢ vanishes (the
[D]-isocline), which according to Eq. 16 is independent of
I, is shown in Fig. 3 b for the standard parameter values in
Table 1. The intersection of this curve with the z-curve for
fixed 7 determines the steady state, which as illustrated in
Fig. 3 b for I = 1.00, is on the unstable branch of the fast
system. Thus there is no stable steady state, and the time
dependence of the system V, n, [D] with [ fixed can be
understood by taking [D] as a slow time-dependent
parameter for the fast system.

To see how this works, assume for definiteness that the
values of V' and [D] lie on the lower branch of steady
states. Because Fig. 3 b shows that there [D] is to the
right of its isocline, it follows that [D] decreases while V'
remains on the lower branch of the z-curve. When ¥ and
[D] move just beyond the lower knee, V is attracted
rapidly to the limit cycle on the upper branch. The limit
cycle on the upper branch, however, is to the left of the
[D]-isocline, so that [D] now increases. As a consequence,
the trajectory is swept through the manifold of limit
cycles for the fast system (V, n) in the direction of the
homoclinic point. When [D] passes the homoclinic point,
the only remaining attractor for the fast system is on the
lower branch of the z-curve, and V rapidly decreases,
completing the bursting cycle. This trajectory is illus-
trated in Fig. 3 b. Thus bursting, for fixed I, can be
understood in terms of the slow variable [D] periodically
sweeping upwards through the limit cycle spikes on the
upper branch and then downwards through the stable
steady states on the lower branch.

The dynamical behavior with I free to vary according
to Eq. 12 can be understood in a comparable fashion. The
isocline for I, which is found from Eq. 12tobe I = I (V),
is independent of [D]. Its functional form is plotted in Fig.
3 ¢ for the standard parameter values in Table 1. To
visualize the dynamical effect of 7, it is convenient to
imagine an /-axis perpendicular to the plane of the
z-curves in Fig. 3 a and extending into the page. In this
three-dimensional space of I, [D], and V the z-curves
become a z-surface extending into the page with a lower
branch that has no outward tilt in the positive I-direction.
The upper branch, on the other hand, is tilted with the
curve defining the locus of the upper knees angled to the
left. Because the surface of [D]-isoclines is independent of
I, by comparing Figs. 3 a and b it is easy to visualize that
the line of its intersections with the two-dimensional

z-surface remains on the unstable center branch of the
z-curves,

To help with this visualization the projection into the
V-[D] and I-[D] planes of the intersection of several
important curves with the z-surface are shown in Fig. 4.
Because the I-isocline in Fig. 3 ¢ is a surface independent
of [D], it is also easy to see that it intersects the z-surface
in a line that lies on the upper branch (near / = 0), on the
lower branch (near I = 1), and on the central (unstable)
branch. The projection of this line onto the I-[D] plane is
given in Fig. 4 b. Because for the standard parameter
values the surface of [D]-isoclines intersects only the
central branch, the complete system has a unique steady
state that is unstable.

Bursting in the complete system (Z, ¥, n, and [D}), as
shown in Fig. 2, is a limit cycle that circles near this

0.00

1.90 2.10 2.30 2.50 70 > 90 3.10

[D]/mM

FIGURE 4 (a) The z-curves for I = 0.00, 0.22, and 1.00 shown together
with the projection of the [D]-isoclinal surface ([{ID] = 0) and the
projection of the time course of one burst for r = 1.5 into the V-[D]
plane. (b) The projection into the I-[D] plane of the intersection of the
[D]-isoclinal surface with the z-surface (dashed line) and the intersec-
tion of the I-isoclinal surface with the z-surface (dotted line) shown on
the same [D]-scale as Fig. 4 a. Also shown are the projections into this
plane of the Hopf points (HB) and homoclinic points (HC) for the fast
subsystem, the lower knee (LK) of the z-surface, and the time course of
one burst for r = 1.5 (closed curve in upper left corner). Note that the
I-isoclinal surface intersects the upper branch of the z-surface near 7 = 0
and the lower branch near 7 = 1. Below I = 0.30 the value of [D] at the
Hopf point is smaller than the value of [D] at the homoclinic point and,
thus, the limit cycle for the fast system is unstable.
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unstable state with I = 0.85. The projection of this
trajectory onto the I-[D] plane, along with the projection
of the homoclinic points (HC) when [D] and I are held
constant, are shown in Fig. 4 b. Note that the trajectory
moves from the active to the silent phase at a homoclinic
point, as predicted by the fast-slow analysis, but over-
shoots considerably the lower knee (LK) before returning
to the active phase. The lower branch of the z-surface, in
this range of values for I, is below the I-isoclinical surface,
in this range of values for 7, is below the I-isoclinal
surface. Thus on a trajectory in this region / increases
until [D] and ¥ get beyond the lower knee of the z-surface
(Fig. 4 a). This forces V to increase rapidly to the upper
branch, thence, bringing 7 above its isocline. This causes /
to decrease on the slow time scale until [D] and V reach
the homoclinic point, where the trajectory then returns
rapidly to the lower branch. Because the isoclinal surface
for I intersects the upper branch only near 7 = 0, the slow
time scale for the change of 7 guarantees that this part of
phase space will not be visited during a burst. On the
other hand if 7, the relaxation time for I, is reduced from
2.6 s to 50 ms (so that I is also a fast variable), the spiking
electrical activity characteristic of bursting disappears. It
is replaced by a limit cycle that oscillates between the
lower branch of the z-surface near I = 1 and the upper
branch near I = 0 (cf. Fig. 4 b), with only vestigial spikes
remaining as the voltage switches from the lower to the
upper branches.

It is not hard to see that the slow variable [D] is an
essential slow variable contributing to bursting, but that /
is not. This can be done by treating [D] as a constant
parameter and examining the dynamics of V, n, and I.
Because I solves Eq. 12, which depends only on V, the
projection of the intersection of the V-isocline with the n-
and [-isoclines onto the V-[D] plane can be obtained by
setting dV/dt = 0 in Eq. 6, dn/d? = 0 in Eq. 11, and
substituting I.(V) for I in Eq. 9. The resulting curve
provides the steady state values of V as a function of [D]
and is given in Fig. 3 d. This curve has a z-shape and
closely resembles the I = 0 curve in Fig. 3 a. For [D]
smaller than the left knee or larger than the right knee
there are stable states on the upper branch (near I = 0)
and lower branch (near I = 1), respectively, while for
each [D] between the knees there are steady states. When
the differential equations are solved for V, n, and I with
[D] fixed, we find only trajectories that relax to the upper
and lower branch of steady states. Thus unless [D] is
allowed to vary there are no limit cycles and no bursting.
Further evidence that 7 is not an essential slow variable
can be obtained by changing its characteristic time
parameter, 7. We find that with [D] fixed the intrinsic
stability of the upper and lower branches is unaffected by
alterations in 7. Thus no matter how slow or fast the

variable I is, unless [D] can change only transient elec-
trical activity is found.

Throughout the analysis in this section we have
assumed that the coupling parameter k in Eq. 5 was large
enough that ADP and calcium were tightly coupled, as in
Eq. 14. This reduced the number of variables to four and
the number of slow variables to two. While a complete
analysis of the effects of varying k will not be attempted
here, the limit that k approaches zero, which makes [D] a
third, and the slowest, slow variable, is easy to under-
stand. Indeed, in the limit that k = 0, [D] becomes a
constant. This is precisely the situation examined in the
previous paragraph, which implies that only steady states
will be observed. If k is not precisely zero (say, k = 107%),
then the slow change in [D] can lead to a limit cycle in
which most of the time is spent at a hyperpolarized and at
a depolarized quasi-steady state with periodic excursions
between the two, the depolarizing excursion involving
transient spiking. The behavior for somewhat larger
values of k is more complex and will be described
elsewhere (Magnus, G., manuscript in preparation).

V. GLUCOSE DOSE-RESPONSE

The electrical activity of the beta cell responds in a
sensitive fashion to changing concentrations of glucose
and other of its metabolites. In Section III we proposed
that the mitochondria provide this sensitivity through the
chemiosmotic gradient, which affects the ATP/ADP
ratio in the cytoplasm. The impact of this on electrical
activity is determined through the dependence of the
ATP-sensitive potassium channels on this ratio. In this
picture the effect of glucose is an indirect one and would
be mimicked by other metabolites that either feed into the
citric acid cycle or otherwise stimulate oxidative phos-
phorylation.

The most important physiological consequence of glu-
cose stimulation is insulin secretion, which has been
shown to be correlated with glucose-stimulated electrical
activity (Meissner, 1976). While the detailed mechanism
connecting these two phenomena is as yet unknown, it is
widely assumed that increases in cytosolic calcium asso-
ciated with spiking provide a link between electrical
activity and secretion. Thus one measure of the glucose
dose-response for the beta cell is the cytosolic calcium
concentration as a function of the stimulatory concentra-
tion of glucose (Himmel and Chay, 1987; Rinzel et al.,
1987). As we have already seen, in our model the parame-
ter r increases with the proton motive force and, thus, it is
an increasing function of glucose. The general effect of r
on the time course of cytosolic calcium is shown in Fig. 2
during bursting (r = 1.0 and 1.5) and spiking (» = 2.0).

238 Biophysical Journal

Volume 56 August 1989



0.5

0.4

03

Ca/uM

02+t

0.1 +
0.0 0.5 1.0 1.5 2.0

FIGURE S The calculated cytosolic calcium concentration as a function
of the glucose-dependent parameter, r. “max” refers to the maximum
calcium value and “min” to the minimum value during oscillations.
There is an abrupt increase in the response just below the threshold to
bursting at rg = 0.66 and a leveling off near the threshold to continuous
spiking at 7cs = 1.64.

The average calcium concentration obviously increases as
r increases.

This effect is investigated more completely in Fig. 5,
where maximum and minimum calcium concentrations
are shown as a function of r for the standard parameter
values. Below ry = 0.66, there is a single stable steady
state with a calcium concentration of ~0.1 uM. This
corresponds to low ambient glucose concentrations and an
absence of electrical activity. Between rg = 0.66 and r¢g =
1.64 bursting is observed, with maximum and minimum
calcium concentrations increasing as r increases in this
range. Above rog = 1.64 one has continuous spiking,
which is chaotic below r = 1.70. While the value of the
calcium concentration is not fixed during continuous
spiking, its maximum and minimum are nearly indistin-
guishable on the scale of the graph, and their values
increase relatively slowly with r. The overall behavior in
Fig. 5§ is qualitatively similar to that found in Himmel and
Chay (1987) and Rinzel et al (1987), who used the
Chay-Keizer minimal model with a constant glucose-
dependent conductance representing the effect of the
ATP-sensitive channels. Notice that the average calcium
concentration changes by a factor of two from the onset of
bursting at rg to the onset of continuous at rog. While the
magnitude of this increase depends on the other parame-
ters used in the calculation, glucose-induced increases in
cytosolic calcium in just this range of concentrations
recently have been observed in isolated beta cells (Rors-
man et al, 1984; Arkhammer et al, 1987).

The dose-response curve for glucose induction of elec-
trical activity can be modified by increasing the external
calcium concentration or by adding sulphonylureas to the
external medium (Atwater, 1988). In sufficient concen-
trations sulphonylureas are known to completely inhibit

the ATP-sensitive potassium channel (Trube et al., 1986)
in what is thought to be a selective fashion, and these
compounds are well known to produce continuous spiking
in bursting islet cells (Meissner and Atwater, 1976). The
fact that bursting can be restored at a fixed glucose
concentration by increasing the calcium concentration in
the external medium (I. Atwater, personal communica-
tion) suggests that additional channels may be involved in
the control of bursting. While we defer a more complete
treatment of this subject, in light of the above experi-
ments it seems important to show that the electrical
behavior found in our calculations is not changed dramat-
ically if additional types of potassium channels are pres-
ent.

For simplicity, we do this using the Ca’*-activated
potassium current given in Eq. 15. The only modification
that this makes in our differential equations is to add this
current to the three existing currents Eqgs. 8-10 on the
right side of the differential equation for the voltage, Eq.
6. Using the values of Ky, and g ¢, given in Table 1 along
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FIGURE 6 (a) Modification of the calculated bursting pattern in Fig.
2 b with a mixed population of ATP-sensitive and calcium-activated
potassium channels. Maximal conductances per cell are gg ,rp = 5,000
and gx ¢, = 35,000, with other parameters as in Table 1 and in Appendix
B. (b) The continuous spiking that results for the system in Fig. 6 a
when the parameter gx o1p is set equal to zero.
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the gxarp = 5,000 and the other standard parameter
values, the resulting solution for the voltage is given in
Fig. 6. Comparing with Fig. 2 for » = 1.5, the primary
effect of the Ca%*-activated potassium channel is seen to
be a shortening of the active phase and a lengthening of
the silent phase. Otherwise all of the qualitative features
of the electrical activity remain unaltered. Using these
same conductances the effect of glyburide in- inhibiting
the ATP-sensitive channel can be examined by setting
gxatp = 0. This leads to the continuous spiking shown in
Fig. 6, in agreement with experiment. On the other hand,
in the absence of the Ca®*-activated potassium channels,
the effect of setting ggarp = 0 is to depolarize the
membrane to the calcium reversal potential of +110 mV,
because the inhibition factor, I, greatly reduces the volt-
age-activated potassium current at positive voltages. This
reinforces the notion that the full range of electrical
activity of the beta cell involves more than just the
ATP-sensitive channel. The consequences of this conclu-
sion will be explored more fully in future publications.

VI. SUMMARY AND CONCLUSIONS

Our purpose has been to make plausible the notion that
the ATP-sensitive potassium channel possesses sufficient
regulatory properties to serve as the control channel for
electrical bursting in the pancreatic beta cell. In doing so
we have relied on the experimental fact that ADP shifts
the ATP inactivation curve to the right, thereby increas-
ing the conductance of the ATP-sensitive channels (Kakei
et al., 1986). In this way modulation of the ATP/ADP
ratio serves to increase the activity of these channels.
Because the ATP/ADP ratio depends on the metabolic
state of the cell, this provides a direct mechanism for
glucose sensing.

In order for this mechanism to lead to bursting, it is
necessary that the voltage-gated channels in the beta cell
affect the ATP/ADP ratio in some fashion. The way that
we have imagined this happening is through the proton
motive force of the mitochondria, which is reduced by
calcium ions brought into the cytoplasm by voltage-gated
calcium channels. The reduction of the proton motive
force tends to decrease the ATP/ADP ratio and, thereby,
activate the ATP-sensitive conductance.

When these qualitative notions are expressed as a
quantitative mathematical model, we find that the solu-
tions to the resulting differential equations exhibit elec-
trical activity similar to that observed experimentally.
This includes a hyperpolarized state at —65 mV at
parameter values corresponding to low glucose concentra-
tions; bursting at intermediate glucose concentrations;
and continuous spiking at high glucose concentrations.
The calculations show that cytosolic calcium concentra-

tion increases from a value near 0.1 M at low glucose to
a value near 0.4 uM at high glucose concentrations, in
agreement with measurements on isolated beta cells.
Although in the calculations presented here we have
assumed that ADP and cytosolic calcium are tightly
coupled dynamically as in Eq. 14, this is not necessary and
comparable results are found even when the coupling
constant k is reduced by four orders of magnitude to
0.001 ms~".

The mathematical features of the model are somewhat
more complicated than previous models of the beta cell,
because it involves two intrinsically slow variables, name-
ly, ADP and the inactivation, /. Following the lead of
Rinzel (1985), we show that bursting can be understood
in terms of the dynamical behavior of two fast variables
(the voltage, V, and activation, n) on which is superim-
posed slow changes in the two parameters representing
the slow variables. For this model, the concentration of
ADP is the crucial slow variable, which serves as the
trigger that causes transitions between the active and
silent phases.

The analysis here relies heavily on the regulatory
properties of the ATP-sensitive potassium channel.
Indeed, it is this channel exclusively that responds to the
trigger variable, ADP. Nonetheless, it seems likely that
other potassium channels, e.g., Ca’*-activated channels,
may share in the regulation of the electrical activity.
Adding a simplified version of the conductance of these
channels to our model, we find only small quantitative
changes in the results of our calculations. Based on our
results it seems likely that a proper mix of regulated
potassium channels is necessary to explain pharmacolog-
ical modifications of the glucose dose-response curves and
other experiments on intact islets. Whether the ATP-
sensitive channel will occupy a major role in explaining
these more complex experiments remains to be seen.

APPENDIX A

Assuming that ADP also rapidly equilibrates between the mitochondrial
matrix and the cytosol, the time rate of change of cytosolic ADP is given
by the sum of its rate of loss in the mitochondria and its rate of change in
the cytosol. The primary processes creating cytosolic ADP are enzyme
catalyzed hydrolysis of ATP and the conversion of ATP and AMP to 2
ADP catalyzed by adenylate kinase, whose rates can be written

(d[D]/d1)e,, = £[T], (A-1)
where k is a pseudo-first order rate constant and [T} is the concentration
of ATP. Because oxidative phosphorylation seems to be the primary
source of ATP during respiration, we neglect the effect of glycolysis.
Thus combining Eqs. 4 and A-1 gives

d[D]/dt = —kexp [r(1 — ¢/r))][D] + k([A] — [D]), (A-2)

where [D] + [T] = [A], k' = kexp(a),r =r' —a,and r, = rir/r'.
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APPENDIX B

The forms of the functions m_(V), and I.(¥) used to describe the
voltage activated potassium and calcium conductances in Egs. 9 and 10
are

JV) =111 + exp [(¥V; — V)/S;)h,

where j = m, n, or I. Specific values are V,, = 4 mV, V, = —15 mV,
Vi=-36 mVand S,, = 14 mV, S, = 5.6 mV, S; = —4.1 mV. The
function h(¥) is fit by a similar functional form with ¥, = —10and S, =
—10. The relaxation time, 7,(v), in milliseconds is taken as

(B-1)

60/)
exp [(V + 75)/65] + exp [—(V + 75)/20]

(V) = (B-2)

with V, as usual, in millivolts, and A\ = 1.5.
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