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A Model of Action Potentials and Fast Ca2þ Dynamics in Pancreatic b-Cells
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ABSTRACT We examined the ionic mechanisms mediating depolarization-induced spike activity in pancreatic b-cells. We
formulated a Hodgkin-Huxley-type ionic model for the action potential (AP) in these cells based on voltage- and current-clamp
results together with measurements of Ca2þ dynamics in wild-type and Kv2.1 null mouse islets. The model contains an L-type
Ca2þ current, a ‘‘rapid’’ delayed-rectifier Kþ current, a small slowly-activated Kþ current, a Ca2þ-activated Kþ current, an ATP-
sensitive Kþ current, a plasma membrane calcium-pump current and a Naþ background current. This model, coupled with an
equation describing intracellular Ca2þ homeostasis, replicates b-cell AP and Ca2þ changes during one glucose-induced spon-
taneous spike, the effects of blocking Kþ currents with different inhibitors, and specific complex spike in mouse islets lacking
Kv2.1 channels. The currents with voltage-independent gating variables can also be responsible for burst behavior. Original
features of this model include new equations for L-type Ca2þ current, assessment of the role of rapid delayed-rectifier Kþ current,
and Ca2þ-activated Kþ currents, demonstrating the important roles of the Ca2þ-pump and background currents in the APs and
bursts. This model provides acceptable fits to voltage-clamp, AP, and Ca2þ concentration data based on in silico analysis.
INTRODUCTION

Excitable cells express voltage-gated Ca2þ channels

(VGCCs) along with Kþ channels that precisely regulate

action-potential (AP) firing, triggering a variety of biochem-

ical events involved in the control of cell function. In general,

the profile of the AP waveform and the gating properties of the

VGCCs determine the peak and duration of the voltage-gated

Ca2þ current (IVCa), which in turn dictates the pattern of Ca2þ

influx. Changes in the AP profile can alter AP-driven Ca2þ

signaling. This is of physiological relevance especially for

pancreatic b-cells, in which Ca2þ dynamics are accompanied

by changes in insulin secretion (1–3).

Over the physiological range of glucose concentrations,

b-cell electrical activity often consists of depolarizing bursts

in plasma membrane potential (Vm). These occur as depolar-

ized plateaus, on which the bursts of APs occur separated by

repolarized electrically silent intervals. Riding on these

depolarized plateaus, the rapid voltage spikes (frequency,

1–5/s), which further depolarize the electrical syncitium of

islet b-cells to ~�20 mV. Bursts become continuous spikes

at high glucose levels (4–8). Spike and burst behavior

depend on multiple different channels, modified by inhibi-

tors and activators as well as by posttranslational modifica-

tion and changes in gene expression. The pattern of electrical

activity likely involves complex interactions between many

different ion channels (1,2). However, the mechanisms

underlying spikes and burst behavior in pancreatic b-cells

have been incompletely characterized.

In this study, we examined the ionic mechanisms medi-

ating depolarization-induced spike activity using electro-

physiological experiments, Ca2þ measurements with high

temporal resolution, and a novel computational model based
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on the properties of individual b-cell currents. We simulated

the experimental data obtained for mouse islets, because they

have been the most thoroughly studied. Although several

ionic models for b-cell spikes have been described (9–12),

they include a limited subset of channels. Experimental

data obtained with recently characterized channel modifiers

and, in particular, data on the Kv2.1�/� mouse model indi-

cate that a broader set of channels and pumps are involved

in regulating insulin secretion. Here, we describe a more

extensive model to consider an extended variety of ion chan-

nels and we show how this model can be used to investigate

spontaneous Vm activity, initiation and termination of the

bursts of spikes, and Ca2þ dynamics in pancreatic b-cells.

METHODS AND THEORY

Vm recordings and calcium measurements

To test the role of Kþ channels in glucose-stimulated APs, intact mouse islet

b-cell membrane potentials were recorded using the perforated-patch current-

clamp configuration. Ca2þmeasurements were also made with high temporal

resolution. Experimental methods were performed as previously described

(13–15).

Formulation of the model

To provide a rigorous quantitative test of the experimental data, we devel-

oped a mathematical model in which specific ionic currents were included

(Fig. 1). The differential equation describing time-dependent changes in

the plasma membrane potential is the current balance equation:

�Cm

dVm

dt
� ¼ IVCa þ IKDr þ IKVs þ IKATP þ IKCa

þ ICap þ INab;
(1)

where IKDr is the rapid delayed-rectifier current, IKVs is the slowly-activated

Kþ current, IKATP is the ATP-sensitive Kþ channel current, IKCa is the Ca2þ-

activated Kþ current, ICap is the plasma membrane Caþ-pump current, and
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INab is the Naþ background current. Cm is the whole-cell membrane capac-

itance. The currents are listed in Fig. 1.

A conventional Hodgkin-Huxley-type model was used for time-depen-

dent Ca2þ and Kþ channels. Boltzman-type equations are assumed for

steady-state activation and inactivation functions (Appendix). The gating

variables were set equal to their steady-state values, if the time constants

of the activation and/or inactivation of the gating variables are small in

comparison with the time interval for one spike. Coefficients used in this

model were either adopted from the model of Fridlyand et al. (16,17) or

are described here. The parameters for which there are no specific experi-

mental data were chosen to be consistent with experimental data presented

here, as well as previously published data, to obtain the proper magnitude

of the voltage and frequency of the spikes that were experimentally recorded

in b-cells. However, all parameters and constants were fitted to be in their

physiological ranges. A full set of current equations and parameter values

are given in the Appendix and Tables 1 and 2.

Voltage-gated Ca2þ current (IVCa)

The whole-cell Ca2þ current in mouse b-cells flows principally through

VGCCs (2,18,19). In addition to having superior conductance properties,

Ca2þ channels undergo rapid but incomplete inactivation during sustained

depolarizing voltage pulses (20,21). b-cells also display a slow Ca2þ-depen-

dent inactivation (19,22–24). Modeling the inactivation behavior of Ca2þ

channels involves both voltage and calcium dependence, and several models

have been proposed to reproduce this behavior (25–27). In our case, we used

the activating gating variable (dCa) (Eq. A2) and two inactivating gating

variables: one rapid and voltage-sensitive (fVCa) and the other slow and

Ca2þ-dependent (f2Ca). Our introduction of these two inactivating gating

variables for a Hodgkin-Huxley-type model of Ca2þ current is based on

discussions by others (25,26).

The steady-state activation curve (dCaN) (Eq. A3) can be described by

a Boltzman-type equation (28,29). Ca2þ channels open rapidly upon

membrane depolarization, with a time constant of ~1 ms (24,27), and we

obtained the equation for the activation time (tdCa) (Eq. A4) by fitting

data from Fig. 4 B of Gopel et al. (24).

We used the conventional equation for voltage-sensitive inactivating

gating variables (fVCa) (Eq. A5). Ca2þ channels close rapidly after a depola-

rizing pulse (28), and we suggest that the time for fVCa inactivation is also

very fast, e.g., fVCa ¼ fVCaN. The steady-state inactivation curve for fVCaN

(Eq. A5) was adopted as a Boltzman-type equation.

FIGURE 1 Schematic diagram of the ionic current and Ca2þ fluxes.

Transmembrane currents are the IVCa, the ICap, the INab, the IKDr, the IKVs;

the IKCa; and the IKATP. Calcium enters the b-cells primarily through

voltage-activated Ca2þ channels by diffusion along an inwardly-directed

electrochemical gradient. At the plasma membrane, two processes are

involved in transporting Ca2þ out of the cell: a Ca2þ pump, and removal

of Ca2þ sequestrated in insulin granules by exocytosis (coefficient ksq).
We formulated a new equation for the slow Ca2þ-dependent inactivating

gating variable (f2Ca), because cytoplasmic Ca2þ changes during one spike

apparently do not exceed 0.1 mM over the basal level in pancreatic b-cells,

leading to only insignificant changes in f2Ca if we used the coefficients

represented in other models (25,26) for cardiac muscle cells. The dynamics

of Ca2þ channels seem similar to the predominant L-type channel, but they

have not been investigated in sufficient detail in pancreatic b-cells to

completely understand differences in the kinetics of inactivation. However,

Shermann et al. (30) suggested that Ca2þ-current-dependent inactivation

of IVCa better reflects the inactivation process in b-cells over a simple

Ca2þ-concentration-dependent inactivation. Therefore, we have suggested

that the rate of inactivation of f2Ca is proportional to a Ca2þ current

through a unitary channel (the term IVCa/gmVCa in Eq. A6) rather than

Ca2þ concentration as has been suggested in other models (25,26). The

dynamic of f2Ca is determined by the relative rates of activation and inac-

tivation (Eq. A6). Parameters (Table 1) were set so that the difference in

the magnitude of IVCa was most pronounced at potentials from �45 to

�10 mV, in the characteristic functional range of mouse b-cells

(19,24,29).

We simulated the double-pulse protocol for voltage-clamp measurements

to compare the predictions of the model with specific experiments (Fig. 2 A).

The f2Ca variable undergoes an IVCa-dependent inactivation. Time depen-

dence of Ca2þ currents and an initial inactivation time (~20 ms) are in

good quantitative agreement with experimental data (19,22,24,29). Simu-

lated voltage dependence of whole-cell peak calcium currents are shown

in Fig. 2 B. The simulated peak I/V curve also compares well with experi-

mental results (19,24,28,29).

Rapid delayed-rectifier Kþ current (IKDr)

Voltage-gated Kþ channels (Kv) determine AP repolarization in the pancre-

atic b-cells. The principal voltage-gated Kþ current in mouse b-cells, a rela-

tively rapid delayed-rectifier Kþ current (IKDr), is responsible for >80% of

the current (2,13,24,31–33).

A Hodgkin-Huxley-type model for IKDr with activation (dKDr) and inacti-

vation (fKDr) gating variables was used (see Appendix Eqs. A7 and A8).

TABLE 1 Cell and membrane current parameters

Parameter Definition Value Reference

Cm Membrane capacitance 6158 pF 16

Vi Cytosol volume 0.764 pL 16

fi Fraction of free

Ca2þ in cytoplasm

0.01 16

F Faraday constant 96,487.0 C/mol

ksg Coefficient of the

sequestration rate of [Ca2þ]i.

0.0001 ms�1 16

gmVCa Maximum conductance for IVCa 1500 pS f

gmKDr Maximum conductance for IKDr 45,000 pS f

gmKVs Maximum conductance for IKVs 2200 pS f

gmKCa Maximum conductance for IKCa 20 pS f
gmNab Maximum conductance for INab 25 pS f

gmKATP Maximum conductance for IKATP 30,000 pS f

PmCap Maximum ICap current 4800 fA f

KKCa Half-maximum Ca2þ binding

constant for IKCa

0.1 mM 16

KCap Half-maximum Ca2þ binding

constant for ICap

0.1 mM 16

ECa Reversal potential for Ca2þ current 100 mV 9

EK Reversal potential for Kþ current �75 mV 16

ENa Reversal potential for Naþ current 70 mV 26

tdKDr Time constant for dKDr 25 ms f
tdKs Time constant for dKs 300 ms f

f, adjusted to fit the experimental values.

Biophysical Journal 96(8) 3126–3139
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Inactivation of IKDr was negligible during a 200-ms depolarization

(14,24,31). Therefore, we have suggested that fKDr ¼ 1. The activation of

the IKDr could be described by n2 kinetics (31). Activation time for dKDr

(tdKDr) is in the range of 10–30 ms (14,24,28) and was approximated as

a constant (Table 1), chosen to provide an acceptable frequency of glucose-

induced spikes that corresponds to experimental data. The value of gmKDr

(Eq. A7) was calculated as 45 nS for standard conditions (Table 1).

Slow-activated TEA-insensitive Kþ current

A minor part of the KV current in insulin-secreting cells from mouse islets or

b-cell lines is insensitive to tetraethylammonium ion (TEA), a nonspecific

pharmacological blocker of voltage-gated Kþ channels ((34–37), see also

Discussion). Therefore, we now include a TEA-insensitive small-conduc-

tance slow-voltage-activated Kþ current (IKVs) regulating the TEA-induced

AP duration and frequency. For simplicity, we propose that maximum

conductance of this current is 10% of the maximum conductance for IKDr

(Table 1), in agreement with experimental evidence that this current is small.

For simplification, we also set its voltage-gated characteristics similar to

those of IKDr (Eqs. A10–A12), except that its activation time constant

(tdKs) (300 ms for IKVs) is considerably longer than for IKDr.

Currents with time- and voltage-independent
gating variables during one spike

To isolate the rhythmogenic potential of the currents considered above, we

have also included several additional currents with gating variables that are

FIGURE 2 (A) Simulation of voltage-clamp experiments for a Ca2þ

current (IVCa), using a double-pulse protocol. The membrane potential was

stepped from the holding potential (�70 mV), where dCa ¼ 0.00244 and

f2Ca¼ 0.884, to the prepulse potential (pointed in figure) for 200 ms. Voltage

was then stepped back to the holding potential (�70 mV) for 10 ms and finally

stepped to test potential. Current record simulations were made for prepulses

(�70, �35, �20, �5 mV). (B) Simulated voltage dependence of whole-cell

peak calcium currents obtained as in the left part of Fig. 2 A. Current param-

eters and equations for IVCa are shown in Table 1 and the Appendix.
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time- and voltage-independent during one spike interval. They serve as

background currents and can be modeled without using activation and inac-

tivation voltage-dependent gating variables.

ATP-sensitive Kþ current

KATP channels are the predominant inwardly rectifying potassium channel

b-cells. They maintain the resting potential in quiescent b-cells at ~�70 mV,

slightly elevated from the electrochemical equilibrium potential for Kþ

(~�75 mV). Free ATP inhibits KATP channels, whereas intracellular free

ADP ([ADP]i) activates them. Glucose elevates the intracellular concentra-

tion ratio of ATP to ADP that causes KATP channel closure and membrane

depolarization (1,17). The endogenous KATP current is reasonably linear

over the physiological voltage range (38,39). This current can be simulated

by a term relating dependence of Kþ flux to resting potential, i.e., V – EK

(10,11,40). We adopted a kinetic model (Eqs. A13–A15 in the Appendix)

for the value of whole-cell KATP channel conductance from Fridyland

et al. (17). Maximum conductance for IKATP is close to that employed previ-

ously (17) and falls in the range that was measured for the maximum KATP

conductance for b-cells.

Ca2þ-activated Kþ currents with time- and
voltage-independent gating variables

Different Ca2þ-activated Kþ (KCa) channels with time- and voltage-inde-

pendent gating variables are expressed in b-cells. (Eqs. A16 and A17). These

include both TEA-sensitive KCa channels (31,33,35) and channels that have

lower sensitivity to TEA (33,41,42). We included a calcium-activated Kþ

current as the current termed IKCa from our model (16).

Plasmalemma Ca2þ-pump current

Plasma membrane Ca2þ pumps are capable of establishing a membrane

potential when operating with Hþ/Ca2þ ¼ 1 (43). For this reason, Ca2þ

pumps provide an outward current (ICap) and also contribute to Vm

(Eq. A18). The equation, the maximum rate, and the half-maximum

Ca2þ-binding constant for ICap were adapted from Fridlyand et al. (16).

Naþ background current

A tetrodotoxin-insensitive Naþ inward current has been described in b-cells.

It may be an Naþ current through nonselective cation channels with time- and

voltage-independent gating variables (16,44–47). This current can be consid-

erable, because there is a large difference in Naþ concentration between the

cytoplasm and the surrounding medium. We have included this current

(INab) in our model as a linear Naþ background current. We used the equation

for INab (Eq. A19) according to the model of Luo and Rudy (26).

Currents not included in the model

Application of tetrodotoxin, a specific voltage-gated Naþ channel blocker, is

known to have a negligible effect on APs in mouse b-cells (1,24). The

picture in human cells is more complex for the inward current (33,48,49),

but as we are focusing on the mouse, we did not include a Naþ voltage-

dependent current in this model.

The Naþ-Kþ pump extrudes three Naþ ions from the cell in exchange for two

Kþ ions, generating a net outward current. Currents provided by Naþ-Ca2þ

exchangers also contribute to Vm. Both these currents were included in our

recent b-cell ionic model (16,17). Other inward and outward currents have

also been found in b-cells (1,2,16). The changes in their conductance do not

appear to play a role in the short time interval during one spike, so we do not

consider these currents in our model. We have included in our model the

time- and voltage-gated independent outward (IKCa, ICap, and IKATP) as well

as inward (INab) currents and suggest that a combinationof these currents is suffi-

cient to describe the effects of the background currents during one spike interval.
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Ca2þ dynamics

Based on the considerations in our general model (16), and including only

IVCa and ICap, the equations for free cytoplasmic Ca2þ ([Ca2þ]i) dynamics

can be written as

d½Ca2þ �
i

dt
¼

fi

�
�IVCa�2ICap

�
2FVi

� ksg

�
Ca2þ �

i

; (2)

where fi is the fraction of free Ca2þ in cytoplasm, F is Faraday’s constant, Vi

is the effective volume of the cytosolic compartment, and ksg is a coefficient

of the sequestration rate of [Ca2þ]i.

Simulation methods

The complete system consists of six state variables: differential equations

describing the time rate of change in membrane voltage (Vm) (Eq. 1),

[Ca2þ]i (Eq. 2) and voltage-dependent gating variables dCa (Eq. A2), f2Ca

(Eq. A6), dKDr (Eq. A8), and dKs (Eq. A11).

Equations and parameter values (Table 1) and initial conditions (Table 2)

contain all the information necessary to carry out the simulations presented

TABLE 2 Initial conditions for state variables at low glucose

level

Variable Definition Initial value

Vm Membrane potential �59.4 mV

dCa IVCa activation gating variable 0.00346

f2Ca IVCa slow-inactivation gating variable 0.856

dKDr IKDr activation gating variable 4.17 10�5

dKs IKVs slow-activation gating variable 4.17 10�5

[Ca2þ]i Intracellular Ca2þ concentration 0.08 mM

Unless otherwise noted, [ADP]i ¼ 100 mM.
in this article. The parameters (units) are time (ms), voltage (mV), concen-

tration (mM), current (fA), conductance (pS), and capacitance (fF). Numer-

ical integration of the Hodgkin-Huxley-type ionic model was carried out

using standard numerical methods (16,17). This model is available for direct

simulation on the website ‘‘Virtual Cell’’ (www.nrcam.uchc.edu) in ‘‘Math-

Model Database’’ on the ‘‘math workspace’’ in the library ‘‘Fridlyand’’ with

name ‘‘MouseSpike’’. Visualization and graphical analysis were performed

using Igor Pro (WaveMetrics, Lake Oswego, OR).

RESULTS

AP and Ca2þ measurements

Fig. 3 A1 shows typical glucose-induced single-spike behav-

iors on depolarized plateaus of bursts for wild-type mouse

islets. Our studies with wild-type mouse islets showed also

that Kv2.1 inhibition with stromatoxin increases the ampli-

tude of glucose-induced APs but decreases their frequency

while increasing their width (14). A typically complex struc-

ture of one spike after stromatoxin action with several Vm

oscillations is shown in Fig. 3 A2. Application of TEA in

the mouse b-cell prolongs the AP duration and increases

its amplitude (Fig. 3 A3). Loss of Kv2.1 in the Kv2.1 null

mouse (Fig. 3 B) caused glucose-stimulated AP duration to

increase, with an associated reduction in AP firing frequency

and a new complex AP structure that resembled the effects of

specific Kv2.1 inhibitors (compare Fig. 3, A2 and B1).

On the other hand, TEA has effects in Kv2.1 null islets

similar to those in control wild-type islets (compare Fig. 3,

A3 and B2). Every glucose-induced AP is accompanied by
A

B

FIGURE 3 (A) Control islets from wild-type mouse

treated with stromatoxin and TEA. Control islet electrical

activity was recorded during treatment of 14 mM glucose

alone (1), or in combination with 100 nM stromatoxin

ScTx-1 (2) or 15 mM TEA (3). Representative APs are

shown. (B) Kv2.1�/� islet electrical activity in response

to 14 mM glucose (1) or in combination with 15 mM

TEA (2). Representative APs are shown.

Biophysical Journal 96(8) 3126–3139
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A

B

FIGURE 4 Experiments with relative Ca2þ measure-

ment (as F535/F535o (13–15)). (A) Glucose-induced bursts

and spikes with simultaneous APs and Ca2þ measurement

in control islets from wild-type mouse during treatment

with 14 mM glucose. The lower record represents, at

a faster timescale, part of the upper record. (B) TEA-

induced bursts and Ca2þ spikes in control mouse islet at

14 mM glucose and 20 mM TEA.
a [Ca2þ]i spike (Fig. 4 A, showing one burst). Measurements

of relative Ca2þ changes after application of TEA during

several bursts are shown in Fig. 4 B. In this case, relative

[Ca2þ]i changes during one spike were significantly higher

after TEA application than during glucose-induced spikes

in Fig. 4 A. Note that we performed only relative Ca2þ

measurements. For this reason, we compared a relative

change of Ca2þ level during one spike with the relative

Ca2þ level during the repolarized electrically silent interval

between bursts to make a valid comparison among different

experiments. Relative Ca2þ changes during one glucose-

induced spike in Kv2.1 knockout mouse islets that were

measured by Jacobson et al. (14) also had greater relative

amplitude compared with wild-type islets.

Biophysical Journal 96(8) 3126–3139
Modeling of spikes and generation of bursts
in pancreatic b-cells

Spontaneous glucose-induced spike activity
in wild-type b-cells

In our model, the membrane potential reaches the AP

threshold through the depolarizing effect of decreased IKATP.

Increased glucose was modeled by closure of KATP channels

after a rise in [ATP]/[ADP] (6,17). The resting membrane

potential was –59.4 mV at 100 mM free [ADP]i (Table 2).

KATP channel closure was simulated by a decrease of

[ADP]i from 100 mM to 15 mM, leading to depolarization

and spontaneous spiking (Fig. 5 A, arrow 1). The result gives

the continuous spike activity in this simulation, as in Fig. 6 A.
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The simulated closing of additional KATP channels after an

initial glucose-induced depolarization was simulated by

a reduction in free [ADP] (Fig. 5 A, arrow 2) that leads to

decreased KATP channel conductance in our model (resulting

Vm depolarization and [Ca2þ]i changes are shown in Fig. 5).

The simulated AP agrees with a large body of experimental

data (Fig. 3 A1 and Fig. 4 A) (2,4,5,7,8,14,28,33).

The possible mechanisms underlying the AP, [Ca2þ]i

changes, and roles of different currents can be better under-

stood by considering the voltage-dependent currents during

one spike (Fig. 7). Fig. 7 A shows Vm, [Ca2þ]i, and the

various currents during a simulation of one spike of

FIGURE 5 Modeling of spontaneous glucose-stimulated spikes and

changes of the intracellular Ca2þ concentration. Glucose-induced spikes

were simulated at a step decrease of the free [ADP]i at arrow 1 from

a high to an intermediate value (from 100 mM to 15 mM) at t¼ 0 and at initial

parameters as in Table 2; all other parameter settings are standard (Table 1).

To simulate a glucose increase, the free [ADP]i was decreased from 15 mM

to 8 mM at arrow 2. (B) Corresponding changes in [Ca2þ]i were simulated

using Eq. 2.
a glucose-generated AP, as in Fig. 6 A. In agreement with

the suggestion of Rorsman and Trube (28), the depolarizing

phase of the action potential results from activation of

voltage-gated Ca2þ channels. Activation of rapid delayed-

rectifier Kþ channels (current IKDr) is responsible for a repo-

larization of the AP. IKVs contributes insignificantly to

depolarization, since this current is small in comparison

with IKDr. Other currents are small and in this model have

an insignificant influence on AP.

Specific blockers of voltage-gated Kþ channels
and Kv2.1 null mouse

To investigate the role of voltage-gated Kþ channels, we

simulated spikes with decreasing ‘‘rapid’’ delayed-rectifier

Kþ channel conductance (Figs. 6 B and 7 B), which corre-

sponds in action to some specific blockers of voltage-gated

Kþ channels, or islets from the Kv2.1 null mouse.

According to Jacobson et al. (14) Kv2.1�/� b cells have

a current amplitude that is only 17% that of control wild-

type. Pharmacological inhibition of Kv2.1 caused a similar

degree of reduction in control b cells. However, only 53%

of the remaining Kv current was sensitive to block by TEA

(14). Consequently, the TEA-sensitive remaining Kv current

amounts to ~9% of the total Kv current in control wild-type

cells. In line with these data, the simulated decreased IKDr

conductance was only 10% of the total IKDr conductivity

used in the simulation of glucose-induced spikes for control

wild-type in Figs. 6 A or 7 A. The overall shape of the simu-

lated AP (Figs. 6 B or 7 B) resembles the experimental AP

seen in AP studies after application of the Kv2.1 channel

blocker stromatoxin (Fig. 3 A2) or in islets from the

Kv2.1�/� mouse (Fig. 3 B1, and see Jacobson et al. (14)).

Fig. 7 B, shows Vm, [Ca2þ]i, and the various currents

during simulation of one spike, as in Fig. 6 B. The major de-

polarizing current for single spikes was again IVCa, as in

Fig. 7 A. The remaining part of IKDr in the interaction with

IVCa generated several fast Vm oscillations in the plateau

phase of an AP by the same mechanisms as observed at
A B C D FIGURE 6 Simulated glucose-induced spike behavior

and [Ca2þ]i. of glucose-induced spikes with the same initial

simulation as in the beginning of Fig. 5 (A) and of Kv2.1

channel blocking (B). For simulation of Kv2.1 channel

blocking, the maximal conductance (gmKDr) for the delayed

rectifier Kþ channels was decreased from 45,000 pS to

4500 pS, and tdKDr was decreased from 25 ms to 20 ms.

(C and D) Simulation of TEA action. In both cases, the

maximal conductance for TEA-dependent Kþ channels

was decreased: from 30,000 to 15,000 pS for KATP

(gmATP), and from 45,000 pS to 45 pS for delayed-rectifier

Kþ channels (gmKDr). In addition, for the mechanism in C,

the maximal conductance for KCa channels (gmKCa) was

decreased from 20 pS to 0.1 pS. In the case of the mecha-

nism in D, gmKCa was increased from 20 to 200 pS and

KKCa was increased from 0.1 mM to 0.3 mM (Eq. A17).

However, IKVs was eliminated (gmKs ¼ 0).
Biophysical Journal 96(8) 3126–3139
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A B C D

FIGURE 7 Simulation of single

spikes. Action potential (Vm), [Ca]i,

IVCa, IKDr, IKVs, IKATP IKCa,, ICap, and

INab are represented for one character-

istic spike. The units are shown in

series, as labeled in the first column, if

no units are represented on the axis.

(A) The model solution is represented

for the spike after simulation of glucose

addition as in Fig. 5 or Fig. 6 A. The

IKVs and IKCa currents are minor

contributors in this mode of oscillation.

(B) A single characteristic spike after

simulation of Kv2.1 blocker applica-

tion, as in Fig. 6 B. The ICap and IKVs

currents are the major contributors in

this repolarizing part of the AP. (C) A

single characteristic spike after simula-

tion of TEA action as in Fig. 6 C. The

proposal for full blocking of IKCa

current was accepted (IKCa z 0). The

IKVs and ICap currents are the major

contributors in this repolarizing part of

the AP. (D) A single characteristic spike

as in Fig. 6 D after simulation of TEA

action in a model that incorporates

Ca2þ-dependent TEA-independent Kþ

channels (current IKCa) instead of

a slow-activated TEA-insensitive Kþ

current (IKVs ¼ 0). In this case, gmKCa

¼ 200 pS, KKCa ¼ 0.3 mM (Eq. A17)

and gmKs ¼ 0. The IKCa and ICap

currents are the major contributors in

the repolarizing part of AP.
glucose-generated AP in Fig. 6 A. However, it occurs at

higher Vm levels, where IKDr has an increased value even

at small conductance. During the single spike, the slow-acti-

vating TEA-insensitive Kþ channels (IKVs) contribute

increasingly in AP, because the time constant for their

activation was evaluated in the range of several hundred

milliseconds in our model. Increased IKVs leads to a repolar-

ization. However, the simulated increase of IKCa, and specif-

ically ICap, also makes a considerable contribution to an

outward current, with an increase of [Ca2þ]i during the spike

and in the subsequent repolarization (Fig. 7 B).

Note that similar APs can be obtained even in the absence

of IKVs if we substantially increase the current of IKCa. For

example, a fitting with gKCa ¼ 70 pS and KKCa ¼ 0.3 mM

for IKCa (at IKVs ¼ 0) leads to results similar to those shown

in Figs. 6 B or 7 B (not shown). In this case, a slow increase
Biophysical Journal 96(8) 3126–3139
in the Kþ outward current leading to a repolarization could

be explained by an increase of IKCa and ICap after the

[Ca2þ]i increase during a single spike. Our model shows

that if IVCa is the depolarized current, then the repolarizing

small currents, such as the resting current from IKDr and

some outward currents (IKVs and/or IKCa and ICap), which

increase during a spike, can explain this complex oscillatory

behavior.

Modeling the effects of TEA

Classical pharmacological blockers of voltage-gated Kþ

channels such as TEA are often employed in b-cell electro-

physiological studies despite a limited selectivity between

different Kþ channels. The effects of TEA on Kþ channels

were studied in cultured insulin-secreting HIT cells using
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the patch-clamp technique (35). High TEA concentrations

partially blocked the majority of islet Kþ channels, but it

was a more effective inhibitor of TEA-sensitive KCa

channels (EC50 ¼ 0.15 mM) than of KATP channels

(EC50 ¼ 15 mM) or ‘‘rapid’’ delayed rectifier Kþ channels

(EC50 ¼ 3 mM) (35). However, the detailed mechanisms

that lead to changes in spike behavior after TEA treatment

remain unknown. We have modeled the action of TEA

(15–20 mM of TEA is typically used in experiments)

by decreasing the maximal conductance of Kþ currents

(Figs. 6, C and D, and 7, C and D). We considered two hypo-

thetical mechanisms.

In the first mechanism, we suggest that IKDr and IKCa were

decreased almost entirely after TEA application, and no

resting IKDr current exists. Since IKATP is less sensitive to

TEA, the initial conductance of IKATP was decreased by

half (Figs. 6 C and 7 C). Fig. 7 C shows Vm, [Ca2þ]i, and

the various currents during simulation of one spike, as in

Fig. 6 C. Activation of IVCa depolarizes the membrane.

Subsequently, the activation of TEA-insensitive IKVs can

contribute increasingly, leading to repolarization. This

current has a small conductance in our model (5% of the

whole-cell conductance of rapid delayed-rectifier Kþ chan-

nels), and its influence is observed only when IKDr is

inhibited and Vm increased. An increase in the ICap with

[Ca2þ]i increase during a spike also plays a considerable

part in the repolarization of the AP.

In the second mechanism, we simulated persistent activity

of TEA-insensitive Ca2þ-dependent Kþ channels after TEA

treatment (Fig. 6 D, and see Fig. 7 D for a single spike). The

experimental basis for this proposal is the existence of some

TEA-insensitive Ca2þ-dependent Kþ channels (see above

and Discussion). However, the conductance and characteris-

tics of this channel have not been adequately explored. As in

the first mechanism, IKDr was totally blocked. For simplicity,

we also proposed that a slow voltage-activated Kþ outward

current is absent in this case (IKVs ¼ 0). Thereafter, we

attempted to determine the coefficients for the model that

closely simulate AP behavior after TEA treatment. We found

that when the conductance and half-maximal Ca2þ binding

constant for IKCa from Eqs. fdA16 and A17 were increased

(from gmKCa ¼ 20 pS (Table 1) to gmKCa ¼ 200 pS and KKCa

from 0.1 mM (Table 1) to 0.3 mM), the simulation reproduced

the characteristic AP after TEA application (Figs. 6 D and

7 D). The following mechanism is simulated in the model:

when IKDr and IKVs were totally blocked, and conductivity

of IKCa was increased, an increase of [Ca2þ]i during a single

spike leads to activation of IKCa and ICap, with subsequent

repolarization. The inclusion of this IKCa conductance in

our general model does not change the picture of simulated

glucose-induced spikes represented in Fig. 5 or Fig. 7 A
(not shown).

In both mechanisms, TEA simulation prolonged the AP

and increased amplitude, but spike frequency was decreased

(Fig. 6, C and D). This occurs because IKVs (or IKCa in the
second mechanism) and ICap are smaller and activate more

slowly compared with IKDr. This allows IVCa to progress to

a point with higher Vm in the absence of IKDr (Figs. 6, C
and D, and 7, C and D). Nevertheless, in both cases, IKATP

makes also a contribution to outward Kþ currents with an

increase of Vm, because the driving force of Kþ flux

increases with a depolarization (Fig. 7, C and D, and see

Eq. A13).

The two mechanisms generate spike patterns similar to

what is seen in both Kv2.1�/� and control islets after TEA

application (compare Fig. 6, C and D, with Figs. 3 A3 and

4 B2, and with Fig. 2 from Jacobson et al. (14)). Our simu-

lations are also consistent with previous observations

(4,5,51,52). Thus, we can simulate the behavior of APs after

TEA applications by almost entirely blocking the voltage-

gated rapid delayed-rectifier Kþ channel conductance.

It is interesting to note that the TEA simulation at low

(subthreshold) glucose ([ADP]i ¼ 100 mM, see Table 2)

does not lead to spike activity in our model. Vm was still

lower (�43.25 mV) than the threshold level for spike gener-

ation (not shown). However, simulation of TEA effects

diminishes the decrease in [ADP]i that is necessary for spike

generation. In this case, spike generation takes place at

[ADP]i¼ 50 mM instead of [ADP]i¼ 15 mM without a simu-

lation of TEA action (not shown). This effect can be

explained by blocking KATP channels with TEA that leads

to decreased IKATP even at moderate [ADP]i levels. These

results agree with experimental data showing that TEA

usually does not generate spikes at low glucose levels, but

decreases the glucose level required for spike generation

(4,51).

Burst activity and fast Ca2þ oscillations

AP bursts likely reflect slow periodic changes of some

currents. This kind of change in overall current can lead to

periodic repolarizations of plasma membrane potential

(with a duration greater than several seconds) with similar

[Ca2þ]i periodicity, usually described as [Ca2þ]i oscillations

(see, e.g., Fig. 4 A, where one burst is represented, and

(6,7,11,40)). The depolarizing component predominates at

the beginning of the burst, but the resultant influx of Ca2þ

during the burst may lead to a progressive increase in Kþ

channel activity and/or a decrease in an inward Naþ current,

leading to repolarization (6,10,16,44). The model allows us

to demonstrate that, for example, the cyclic simulation of

the channel conductivity for KATP channels, Ca2þ-activated

Kþ channels, and an inward Naþ current can lead to a burst

pattern in our model (Fig. 8, A–E) (for details, see Discus-

sion). Note that in all cases only small changes in currents

(in the range of 2 pA) were necessary to simulate burst

behavior (see Fig. 8, C–E). Two or three of these current-

activity changes may also act simultaneously during burst

generation, requiring even smaller changes in the individual

currents. The amplitude and frequency of APs progressively
Biophysical Journal 96(8) 3126–3139
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A

B

C

D

E

FIGURE 8 Simulation of glucose-induced burst activity and [Ca2þ]i with

the initial simulation, as in Fig. 6 A for glucose-induced spikes in wild-type

mouse. (A–C) Action potential (A), [Ca2þ]i (B), and IKATP change (C) as

regulators of bursting. Slow electrical bursting and [Ca2þ]i changes were

simulated by a step increase and decrease of the KATP channel conductance

by changes in [ADPf]i. At arrow 1, the [ADPf]i was increased from 15 mM to

20 mM, at arrow 2 from 20 mM to 25 mM, and at arrow 3 from 25 mM back

to 15 mM. (D) IKCa change as a regulator of bursting. AP and [Ca2þ]i oscil-

lations were simulated at a step increase and decrease of the KCa channel

conductance. At arrow 1, the gmKCa was increased from 20 pS to 35 pS,

at arrow 2 from 35 pS to 50 pS, and at arrow 3 from 50 pS back to

20 pS. Only IKCa is shown. AP and [Ca2þ]i changes were the same as in

Fig. 8, A and B. (E) INab change as a regulator of bursting. AP and

[Ca2þ]i oscillations were simulated at a step decrease and increase of the

Naþ background current (INab) conductance. At arrow 1, the gmNab was

decreased from 25 pS to 20 pS, at arrow 2 from 20 pS to 15 pS, and at arrow

3 from 15 pS back to 25 pS. Only INab is shown. AP and [Ca2þ]i changes

were the same as in Fig. 8, A and B.
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decrease during the burst, terminated by repolarization and

an electrically silent interval (see Fig. 4 A, for example,

and (6,7,40)). This behavior was also simulated with

a gradual cell repolarization in our model (Fig. 8 A).

DISCUSSION

We developed this model to gain further insights into

coupling cation flux to [Ca2þ] regulation in b-cells, a critical

process for physiological insulin secretion that remains

incompletely understood. We used the Hodgkin-Huxley

formalism to describe the behavior of channels. This choice

is consistent with our goal, to reconstruct the AP that results

from ensemble currents through many individual channels.

The key feature of the model is that it can be used to explore

the putative mechanisms underlying AP spike activity. This

semiquantitative model simulates the behavior of b-cell APs

under a wide range of experimental conditions, including:

1. Changes in the period and amplitude of AP oscillations in

response to glucose challenge.

2. Complex AP behavior due to Kþ channel blockade with

TEA.

3. Increases in the duration of the plateau phase of AP spikes

observed in response to specific KV2.1 blockers.

4. Changes in islet electrical activity from the Kv2.1 null

mouse compared with controls.

Chay and Keizer (9) described the first Hodgkin-Huxley-

type ionic model based on electrophysiological data for

b-cells, where generation of spikes was simulated as a result

of an interaction between only two channels (voltage-gated

Ca2þ and voltage-gated delayed-rectifier Kþ channels). Ke-

izer and Magnus (10) improved this model by including

KATP channels, an approach also used in later models to

describe spikes in pancreatic b-cells (11,16). The temporal

interaction of IVCa and IKDr is sufficient to explain the repet-

itive spiking observed in glucose-induced b-cells, simulating

a reasonably accurate glucose-induced spike pattern

(9,11,13). The interaction focusing on IVCa and IKDr was

also used for a simulation of glucose-induced spikes in the

model presented here. However, the use of mathematical

models of APs where only the interaction between IVCa

and IKDr is included presents difficulties for a detailed reca-

pitulation of more complex experimental conditions. In

particular, the spikes obtained from islets of Kv2.1 knockout

mouse and the similar spikes obtained after application of

specific Kv2.1 inhibitors (Fig. 3, A2 and B1) had a specific

complex shape that cannot readily be explained by existing

models. These experimental results show that other channels

must be included for an explanation of the regulation of spike

activity in these circumstances. We found that implementing

a small residual TEA-sensitive KV current (IKDr), TEA-

insensitive slow-activated Kþ channels (IKVs), or Ca2þ-acti-

vated Kþ current, as well as currents contributed by Ca2þ

pumps, can help the model to more closely simulate the
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full range of spike behavior observed experimentally, partic-

ularly in the absence of Kv2.1, or induced by application of

TEA.

As in previous models, IVCa is the major depolarizing

current during spike generation. For the IKDr conductance,

our simulations show that Kv2.1 is a likely candidate for

the principal delayed-rectifier isoform expressed in mouse

b-cells, in keeping with findings from several experimental

studies (14,32). The absence of Kv2.1 channels results in

an increased glucose-stimulated AP duration, a decreased

firing frequency, and a complex AP behavior (Fig. 3, A2
and B1; see also Jacobson et al. (14)). These changes in

AP can be explained by the existence of other Kv currents

(IKCa, IKVs, and residual IKDr current, which remain intact

after blockade of Kv2.1 channels) and ICap (see Figs. 6 B
and 7 B). By reducing the IKDr conductance 10-fold in the

model, the simulated complex spikes resembled the spike

picture in experiments with Kv2.1�/� islets. However, in

contrast to mouse, the Kv2.1 isoform appears to make only

a small contribution in human b-cells, consistent with obser-

vations that Kv2.1 blockade had only modest effects on elec-

trical activity (33).

Which channels can be responsible for these currents?

Residual IKDr current, which remains intact after
blockade of Kv2.1 channels

According to our simulations to explain the complex

behavior of APs obtained after elimination of Kv2.1 chan-

nels, the conductance IKDr should be reduced to ~10% of

the initial IKDr conductance to obtain a residual current that

has detectable effect. Such a small residual TEA-dependent

KV current is indeed detectable in the Kv2.1 null mouse islets

(14). However, it remains incompletely characterized. There

is limited data on molecular identification of all of the non-

Kv2.1 channels involved in the TEA-sensitive part of the

KV current. Some channels other than Kv2.1 channels ex-

pressed in b-cells are TEA-sensitive, for example, Kv3.1

and Kv3.2 (36,53) and could be responsible for the residual

TEA-sensitive KV current.

Small TEA-insensitive voltage-dependent
current (IKVs)

We set the conductance for this current to 5% of the total KV

channel conductance (see Table 1) and found that this small

value is enough to closely approximate experimental data. A

small TEA-insensitive current really found in b-cells contrib-

utes to the outward Kþ current, and its maximal conductance

is within the range used in our model for IKVs (34–36,54).

However, to accurately describe the experimental data, in

particular the prolongation of AP duration with TEA, our

model used a slow activation time (300 ms in Table 1) for

this current.

Which TEA-insensitive channels can lead to repolariza-

tion during a spike after TEA application, and what other
characteristics should it display? We can rule out residual

TEA-sensitive Kv2.1 channels, because spike behavior after

TEA application is similar in wild-type and KV2.1 knockout

mouse islets (see Fig. 3, A3 and B2). TEA-insensitive Kv1.4

and/or Kv4.2 channels could contribute to an inactivating

portion of MIN6 cell outward Kþ current recorded after

TEA application (54). Another candidate is the TEA-insensi-

tive voltage-gated KCNQ1 channel that was detected in

INS-1 cells and in mouse islets (55). The TEA-insensitive

voltage-gated ether-a-go-go Kþ channels (or human ERG

channels) can also influence both insulin secretion and AP

firing frequency in isolated human islets (56). ERG channels

were found recently in b-cells from rat islets (57). Interest-

ingly, ERG currents activate slowly (in several seconds)

upon depolarization to potentials below 0 mV (58). This

time-activated kinetics of the ERG current looks remarkably

similar to the proposed IKVs current in our model.

We also found that the spike shape in b-cells after

blockade of Kv channel by TEA resembles the AP in the

cardiac sinoatrial node myocytes (see, e.g., Berecki et al.

(59)). In these cells a fast Naþ current appears to be small

or absent (60) and the AP activating mechanisms may be

determined by Ca2þ and KV channels interacting, similar

to the spike generating mechanism in b-cells. The slow- as

well as fast-activating delayed-rectifier Kþ channels were

found in cardiac sinoatrial node myocytes. In these cells,

the slow-activating Kþ channels are activated at membrane

potentials similar to those for fast-activating Kþ channels

but with different kinetics, and these slowly-activated

currents determine the latter phase of repolarization (20).

HERG and KCNQ1 Kþ channels play a major role in action

potential repolarization in these myocytes (59,60). Based on

these investigations, we can suggest that TEA-insensitive

voltage-dependent KCNQ1 and/or HERG channels could

contribute to the slowly-activated voltage-gated Kþ channels

in b-cells. However, further studies are needed to better

understand these channels in b-cells from different species.

Plasma membrane Ca2þ-pump current (ICap)
and Ca2þ-activated Kþ current (IKCa)

We investigated another possible explanation for spike

generation in cases where APs are long and of high ampli-

tude. The relative Ca2þ concentration increases moderately

during each glucose-generated spike (Fig. 4 A) in compar-

ison with Ca2þ changes during high amplitude with slow

spikes after Kv2.1 channel blockade (see Fig. 4 in Jacobson

et al. (14)) or TEA application (Fig. 4 B). Other studies using

Ca2þ-sensing fluorescent dyes to monitor temporal changes

have also shown small but detectable changes in [Ca2þ]i

within tens of milliseconds during a single glucose-induced

electrical spike followed by large-amplitude [Ca2þ]i changes

after TEA application (52).

As the [Ca2þ]i oscillations are small, the changes in Ca2þ-

dependent currents (IKCa and ICap) are also small compared
Biophysical Journal 96(8) 3126–3139
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with the change of IKDr during the simulation of glucose-

generated spikes in wild-type mouse islets (see Figs. 6 A
and 7 A) and provide only background currents in our model.

However, the larger [Ca2þ]i increase during single TEA or

Kv2.1 block-induced spikes can activate IKCa and ICap

(Fig. 7, C and D). In this case, TEA-insensitive small-

conductance voltage-independent, Ca2þ-dependent Kþ

channels and ICap could contribute to repolarization of APs

and, together with IVCa, could also be considered as candi-

date pacemakers for some long and high-amplitude spikes.

Spike repolarization induced by IKCa activation was orig-

inally suggested in earlier studies (12,61). However, a role

for ICap was not considered. Surprisingly, the results of the

simulations show that a plasma membrane Ca2þ-pump

current can also contribute to the AP mechanism when

spikes have high amplitude and low frequency.

Which Ca2þ-activated Kþ channels can be responsible for

repolarization during a spike after TEA application or after

Kv2.1 channel blockade? Several Ca2þ-activated Kþ

channels are expressed in b-cells. One of them is highly

TEA-sensitive (Kd <1 mM), the maxi-KCa (BKCa, slo)-

like channels (18,62). Another class of KCa channel genes

expressed in b-cells is the small-conductance (SK) channels

(18,41). Small-conductance KCa channels, in particular SK4,

are only weakly sensitive to TEA (63). These channels could

be responsible for a TEA-insensitive voltage-independent

Ca2þ-dependent current in our model.

Note that our model suggests that the mechanism for

specific amplification of spike activity leads to increased

[Ca2þ]i, which correspondingly may enhance glucose-

dependent insulin secretion, similar to the results with

blockers of the b-cell KATP channels (Figs. 5 and 6). If useful

tissue specificity could be engineered, such blockers might

provide alternatives to currently available treatment for

type 2 diabetes (3,32,64).

Bursts of APs and the Ca2þ oscillations

Mechanisms that generate and terminate spikes are respon-

sible for the bursts of APs and Ca2þ oscillations. Changes

in voltage-gated Ca2þ and Kþ currents and/or voltage-

independent gating variable currents can take part in burst

generation. For example, the spikes and the burst itself can

be terminated during a single burst, if some parameters in

the equations for voltage-gated currents (for example, IVCa,

IKDr, and IKVs in our model) that we accepted as constants

can instead change slowly in comparison with a single spike

period. This would require drift in a direction leading to Vm

repolarization and spike and burst cancellation. Such a mech-

anism may require modeling of time-dependent changes of

coefficients in the equations for voltage-gated currents.

However, at this time, there is no experimental evidence

for this kind of mechanism. Another hypothesis concerning

the mechanisms of spike generation and cancellation during

the bursts employs slow cyclic changes in conductance of the

voltage-independent gating variable currents. For example:
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1. A [Ca2þ]i increase during a burst can lead to a decrease in

ATP/ADP ratio, leading to opening of KATP channels and

plasma membrane depolarization (8,10,16). We found

that repolarization followed by a silent interval with

a [Ca2þ]i decrease can be simulated by a gradual increase

of KATP channel conductance after an increase in free

[ADP] to 5 mM and 10 mM, correspondingly. Decreasing

ADP concentration to initial levels restored spike activity

and generated the burst (Fig. 8, A–C).

2. An increase in Kþ channel activity can occur via an effect

on slowly-activating and deactivated specific Ca2þ-acti-

vated Kþ channels (6,37). This channel was not directly

modeled here. However, we were able to reproduce the

reversible conductivity changes in Ca2þ-activated Kþ

channels in general. Fig. 8 D shows the burst behavior

that can be simulated by an increase and a decrease of

IKCa conductance. (Note that in the second and third cases,

the behavior of APs and [Ca2þ]i was the same as for the

first mechanism, and we do not show them separately.)

3. Increased [Ca2þ]i can lead to increased [Ca2þ] in endo-

plasmic reticulum. This decreases an inward Naþ or

Ca2þ current through nonselective cation channels

(16,44,45). We simulated this mechanism by gradually

decreasing INab conductance, with a subsequent increase

(Fig. 8 E). It also leads to a simulation of the burst and

the corresponding Ca2þ changes.

Our simulations in Fig. 8 show clearly that after the large

depolarizing effect of closing KATP channels, the subsequent

generation and termination of the bursts can be determined

by small cyclic changes, in the range of 2 pA, of the back-

ground voltage-independent gating variable currents.

Several suggestions have been made as to the mechanism

that underlies the cyclic changes in the conductivity of

some background currents (further discussion can be found

in (11,16,17,65)).

CONCLUSION

Our experiments on Kv2.1�/� mouse islet cells, using

specific Kv2.1 channel inhibitors and TEA application

with model simulations, demonstrate the importance of

Kv2.1 channels and also implicate other KV channels in

AP regulation. This suggests that other voltage-gated Kþ

channels, along with Kv2.1 channels, not only take part in

regulating normal spike activity but are able to control spikes

in the membrane potential in the absence of Kv2.1 channels.

It was possible to achieve a reasonable fit between our exper-

imental results and a general mathematical model by em-

ploying a voltage-gated calcium current, a delayed-rectifier

Kþ current, a small slowly-activating Kþ current, and several

voltage-gated independent Kþ and Naþ background

currents. The results of the computer simulations using this

adaptable model of islet AP spikes provide insight into the

mechanism by which each channel contributes to APs under

a variety of experimental conditions.
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APPENDIX: MODEL EQUATIONS AND
PARAMETERS

Ca2þ current (IVCa)

IVCa ¼ gmVCadCafVCaf2CaðVm � ECaÞ (A1)

d dCa

dt
¼ dCaN� dCa

tdCa

(A2)

dCaN ¼ 0:002 þ 1

1 þ exp½ð�2�VmÞ=8:8� (A3)

tdCa ¼ 2:2� 1:79 � exp� ½ðVm � 9:7Þ=70:2�2 (A4)

fVCa ¼ fVCaN ¼
1

1 þ exp½ð9 þ VmÞ=8� (A5)

df2Ca

dt
¼ 0:007ð1� f2CaÞ � 0:0025ð � IVCa=gmVCaÞf2Ca

(A6)

Delayed rectifier Kþ current (IKDr)

IKDr ¼ gmKDr d 2
KDr fKDrðVm � EKÞ; (A7)

d dKDr

dt
¼ dKDr�dKDr

tdKDrN

(A8)

dKDrN ¼
1

1 þ exp½ð�9�VmÞ=5� (A9)

Slow-activated TEA-insensitive Kþ current (IKVs)

IKVs ¼ gmKVs d 2
Ks fKDrðVm � EKÞ; (A10)

ddKs

dt
¼ dKs�dKs

tdKsN

(A11)

dKsN ¼
1

1 þ exp½ð�9�VmÞ=5� (A12)

ATP-sensitive Kþ channel current (IKATP)

IKATP ¼ gmKATPOKATPðVm � EKÞ; (A13)

where

h
MgADPf

i
i
¼ 0:55

�
ADPf

�
i
0 ; (A15)

where OKATP is the fraction of open KATP channels, MgADPf is free Mg-

bound ADP, [ADPf]i is free ADP concentration in cytoplasm.

Ca2þ-activated Kþ current (IKCa)

IKCa ¼ gmKCafKCaðVm � EKÞ; (A16)

where

fKCa ¼
�
Ca2þ �4

i�
Ca2þ �4

i
þK 4

KCa

: (A17)

Plasma membrane Ca2þ pump current (ICap)

ICap ¼ PmCap

�
Ca2þ �2

i�
Ca2þ �2

i
þK 2

Cap

: (A18)

Naþ background current (INab)

INab ¼ gmNabðVm � ENaÞ: (A19)
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